Complexity Hierarchies in Euclidean Stars
Abstract
1. Introduction
2. The Euclidean Condition and Its Consequences
2.1. Basic Equations and Variables
2.2. The Weyl Tensor
2.3. The Transport Equation
2.4. The Exterior Spacetime and Junction Conditions
3. The Conditions for Classifying Euclidean Stars
3.1. The Complexity Factor
3.2. The Homologous (H) and the Quasi-Homologous () Condition
3.3. Euclidean Stars and Their Properties
- From (37), it follows that if the system is dissipating in the form of heat flow, the collapsing source requires , implying that because of (8), . This means that dissipation does not allow collapsing particles to follow geodesics. Inversely, of course, non-dissipative Euclidean models are necessarily geodesic since implies that, because of (8) and (37), .
- From (40), it follows that if , then and spacetime becomes Minkowskian. Therefore, all Euclidean stars are necessarily non-static. Furthermore, using (13), (40) can be rewritten asThe above equation can be interpreted as the Newtonian kinetic energy (per unit mass) of the collapsing particles being equal to their Newtonian potential energy.
- The proper radial three-acceleration of a falling particle inside can be calculated to obtainOn the other hand, due to the Euclidean condition, the dynamical Equation (43) becomesThus, it appears that the contribution of the non-gravitational force term (the last on the right-hand side) to , for any fluid element, does not depend on its inertial mass density (). Or, in other words, non-gravitational forces produce a radial three-acceleration independent on the inertial mass density of the fluid element, similarly to the gravitational force term.
4. A Hierarchy of Euclidean Stars According to Their Complexity
4.1. Evolution with
4.1.1. Models Satisfying H Condition and
4.1.2. Models Satisfying Only
4.2. Evolution with
4.2.1. Models with and Evolution
4.2.2. A Toy Model
4.2.3. Models with
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Herrera, L.; Santos, N.O. Collapsing spheres satisfying an Euclidean condition. Gen. Relativ. Gravit. 2010, 42, 2383–2391. [Google Scholar] [CrossRef]
- Govinder, K.S.; Govender, M. A general class of Euclidean stars. Gen. Relativ. Gravit. 2010, 44, 147. [Google Scholar] [CrossRef]
- Govender, G.; Govender, M.; Govinder, K.S. Thermal behavior of Euclidean stars. Int. J. Mod. Phys. D 2010, 19, 1773. [Google Scholar] [CrossRef]
- Abebe, G.; Maharaj, S.; Govinder, K. Generalized Euclidean stars with equation of state. Gen. Relativ. Gravit. 2014, 46, 1733. [Google Scholar] [CrossRef]
- Ivanov, B. All solutions for geodesic anisotropic spherical collapse with shear and heat radiation. Astrophys. Space Sci. 2016, 361, 18. [Google Scholar] [CrossRef]
- Maharaj, S.; Tiwari, A.; Mohanlal, R.; Narain, R. Riccati equations for bounded radiating systems. J. Math. Phys. 2016, 57, 092501. [Google Scholar] [CrossRef]
- Abebe, G.; Maharaj, S. Charged radiating stars with Lie symmetries. Eur. Phys. J. C 2019, 79, 849. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.; Naseer, T. Evolution of the charged dynamical radiation spherical structures. Ann. Phys. 2020, 420, 168267. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.; Naseer, T. Measure of complexity for dynamical self-gravitating structures. Int. J. Mod. Phys. D 2020, 29, 2050061. [Google Scholar] [CrossRef]
- Mumtaz, S.; Manzoor, R.; Sarwar, U. Solutions for anisotropic dissipative collapse in f(R) gravity. New Astron. 2024, 106, 102133. [Google Scholar] [CrossRef]
- Herrera, L. New definition of complexity for self–gravitating fluid distributions: The spherically symmetric static case. Phys. Rev. D 2018, 97, 044010. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Definition of complexity for dynamical spherically symmetric dissipative self–gravitating fluid distributions. Phys. Rev. D 2018, 98, 104059. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Quasi–homologous evolution of self–gravitating systems with vanishing complexity factor. Eur. Phys. J. C 2020, 80, 631. [Google Scholar] [CrossRef]
- Mitra, A. Why gravitational contraction must be accompanied by emission of radiation in both Newtonian and Einstein gravity. Phys. Rev. D 2006, 74, 024010. [Google Scholar] [CrossRef]
- Kazanas, D.; Schramm, D.N. Neutrino competition with gravitational radiation during collapse. In Sources of Gravitational Radiation; Cambridge University Press: New York, NY, USA, 1979. [Google Scholar]
- Lemaître, G. L’Univers en expansion. Ann. Soc. Sci. Brux. 1933, A 53, 51. [Google Scholar]
- Tolman, R.C. Effect of Inhomogeneity on Cosmological Models. Proc. Natl. Acad. Sci. USA 1934, 20, 169. [Google Scholar] [CrossRef]
- Bondi, H. Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 1947, 107, 410. [Google Scholar] [CrossRef]
- Sussman, R.A. Quasilocal variables in spherical symmetry: Numerical applications to dark matter and dark energy sources. Phys. Rev. D 2009, 79, 025009. [Google Scholar] [CrossRef]
- Herrera, L.; Le Denmat, G.; Santos, N.O.; Wang, A. Shear–free radiating collapse and conformal flatness. Int. J. Mod. Phys. D 2004, 13, 583. [Google Scholar] [CrossRef]
- Maharaj, S.D.; Govender, M. Radiating collapse with vanishing Weyl stresses. Int. J. Mod. Phys. D 2005, 14, 667. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Some analytical models of radiating collapsing spheres. Phys. Rev. D 2006, 74, 044001. [Google Scholar] [CrossRef]
- Misner, C.; Sharp, D. Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse. Phys. Rev. 1964, 136, B571. [Google Scholar] [CrossRef]
- Cahill, M.; McVittie, G. Spherical Symmetry and Mass-Energy in General Relativity. I. General Theory. J. Math. Phys. 1970, 11, 1382. [Google Scholar] [CrossRef]
- Israel, W. Nonstationary irreversible thermodynamic: A causal relativistic theory. Ann. Phys. 1976, 100, 310–331. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J. Thermodynamic of nonstationary and transient effects in a relativistic gas. Phys. Lett. A 1976, 58, 213–215. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 1979, 118, 341–372. [Google Scholar] [CrossRef]
- Eckart, C. The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid. Phys. Rev. 1940, 58, 919. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. Fluid Mechanics; Pergamon Press: London, UK, 1959. [Google Scholar]
- Triginer, J.; Pavon, D. On the thermodynamics of tilted and collisionless gases in Friedmann–Robertson–Walker spacetimes. Class. Quantum Gravity 1995, 12, 199. [Google Scholar] [CrossRef]
- Darmois, G. Memorial des Sciences Mathematiques; Gauthier-Villars: Paris, France, 1927; p. 25. [Google Scholar]
- Chan, R. Collapse of a radiating star with shear. Mon. Not. R. Astron. Soc. 1997, 288, 589–595. [Google Scholar] [CrossRef]
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Il Nuovo C. B 1966, 44, 1–14. [Google Scholar] [CrossRef]
- Schwarzschild, M. Structure and Evolution of the Stars; Dover: New York, NY, USA, 1958. [Google Scholar]
- Hansen, C.; Kawaler, S. Stellar Interiors: Physical Principles, Structure and Evolution; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Kippenhahn, R.; Weigert, A. Stellar Structure and Evolution; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Chan, R. Radiating gravitational collapse with shear revisited. Int. J. Mod. Phys. D 2003, 12, 1131. [Google Scholar] [CrossRef]
- Pinheiro, G.; Chan, R. Radiating gravitational collapse with shearing motion an bulk viscosity revisited. Int. J. Mod. Phys. D 2010, 19, 1797. [Google Scholar] [CrossRef]
- Govender, M.; Reddy, K.P.; Maharaj, S.D. The role of shear in dissipative gravitational collapse. Int. J. Mod. Phys. D 2014, 23, 1450013. [Google Scholar] [CrossRef]
- Glass, E.N. Shear-free gravitational collapse. J. Math. Phys. 1979, 20, 1508. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, L.; Di Prisco, A.; Ospino, J. Complexity Hierarchies in Euclidean Stars. Symmetry 2025, 17, 1517. https://doi.org/10.3390/sym17091517
Herrera L, Di Prisco A, Ospino J. Complexity Hierarchies in Euclidean Stars. Symmetry. 2025; 17(9):1517. https://doi.org/10.3390/sym17091517
Chicago/Turabian StyleHerrera, Luis, Alicia Di Prisco, and Justo Ospino. 2025. "Complexity Hierarchies in Euclidean Stars" Symmetry 17, no. 9: 1517. https://doi.org/10.3390/sym17091517
APA StyleHerrera, L., Di Prisco, A., & Ospino, J. (2025). Complexity Hierarchies in Euclidean Stars. Symmetry, 17(9), 1517. https://doi.org/10.3390/sym17091517