Sharp Curvature Inequalities for Submanifolds in Conformal Sasakian Space Forms Equipped with Quarter-Symmetric Metric Connection
Abstract
1. Introduction
2. Preliminaries
3. Casorati Curvatures
4. Main Results
- (i)
- The GNDCC satisfies the inequality:
- (ii)
- The GNDCC satisfies the inequality:
- (i)
- The NDCC satisfies the inequality
- (ii)
- The NDCC satisfies the inequality
- (i)
- The GNDCC satisfies
- (ii)
- The GNDCC satisfies
- (i)
- The GNDCC satisfies:
- (ii)
- The GNDCC satisfies:
5. Example
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GNDCC | Generalized normalized -Casorati curvature (s) |
NDCC | Normalized -Casorati curvature (s) |
QSMC | Quater-symmetric metric connection (s) |
CSSF | Conformal Sasakian space form (s) |
References
- Abedi, E.; Bahrami, R.; Tirpathi, M.M. Ricci and Scalar curvatures of submanifolds of a CSSF. Arch. Math. Brno Tomus 2016, 52, 113–130. [Google Scholar] [CrossRef]
- Casorati, F. Mesure de la courbure des surface suivant 1’idea commune. Ses rapports avec les mesures de coubure gaussienne et moyenne. Acta Math. 1999, 14, 95–110. [Google Scholar] [CrossRef]
- Descu, S.; Haesen, S.; Verstralelen, I. Optimal inequalities involving Casorati curvatures. Bull. Transylv. Univ. Brasov. Ser. B 2007, 49, 85–93. [Google Scholar]
- Aquib, M.; Lee, J.W.; Vîlcu, G.-E.; Yoon, D.W. Classification of Casorati ideal Lagrangian submanifolds in complex space forms. Differ. Geom. Appl. 2019, 63, 30–49. [Google Scholar] [CrossRef]
- Aquib, M. An Optimal Inequality for Warped Product Pointwise Semi-Slant Submanifolds in Complex Space Forms. Axioms 2025, 14, 213. [Google Scholar] [CrossRef]
- Lone, M.A.; Shahid, M.H.; Vîlcu, G.E. On Casorati curvatures of submanifolds in pointwise Kenmotsu space forms. Math. Phys. Anal. Geom. 2019, 22, 2. [Google Scholar] [CrossRef]
- Ghasoiu, V. Inequalities for the Casorati curvatures of the submanifolds in complex space form, Riemannian geometry and application. In Proceeding RIGA, 2011 ed.; Univ. Buchuresti: Bucharest, Romania, 2011; pp. 145–150. [Google Scholar]
- Vîlcu, G.E. An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature. J. Math. Anal. Appl. 2018, 465, 1209–1222. [Google Scholar] [CrossRef]
- Vîlcu, G.E. Horizontally conformal submersions from CR-submanifolds of locally conformal Kaehler manifolds. Med. J. Math. 2020, 17, 26. [Google Scholar]
- Vaisman, I. Conformal chnages of almost contact metric structures. Geom. Differ. Geom. Lect. Notes Math. 1980, 792, 435–443. [Google Scholar]
- Libermann, P. Sur les structures infinitesimales regulieres. Bull Soc. Math. Fr. 1955, 83, 195–224. [Google Scholar] [CrossRef]
- Banaru, M. A new characterization of the Gray-Herneella classes of almost Hermitian manifold. In Proceedings of the 8th International Conference on Differential Geometry and Its Applications, Opava, Czech Republic, 27–31 August 2001. [Google Scholar]
- AlHusseini, F.H.; Abood, H.M. Quasi Sasakian Manifold Endowed with Vanishing Pseudo Quasi Conformal Curvature Tensor. MethodsX 2025, 15, 103512. [Google Scholar] [CrossRef]
- AlHusseini, F.H.; Abood, H.M. Pseudo-quasi Conformal Curvature Tensor of Quasi Sasakian Manifold with Generalized Sasakian Space Forms. Malays. J. Math. Sci. 2025, 19, 383–398. [Google Scholar] [CrossRef]
- Abood, H.M.; Abass, M.Y. A study of New Class of Almost Contact Metric Manifold of Kenmotsu Type. Tamkang J. Math. 2021, 52, 253–266. [Google Scholar] [CrossRef]
- Abood, H.M.; Al-Husseini, F.H. On the Conharmonic Curvature Tensor of A Locally Conformal Cosymplectic Manifold. Commun. Kor. Math. Soc. 2020, 35, 269–278. [Google Scholar]
- Chen, B.Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60, 568–578. [Google Scholar] [CrossRef]
- Aquib, M. Casorati-Type Inequalities for Submanifolds in S-Space Forms with Semi-Symmetric Connection. Symmetry 2025, 17, 1100. [Google Scholar] [CrossRef]
- Qu, Q.; Wang, Y. Multiple warped products with a quarter-symmetric connection. J. Meth. Anal. Appl. 2015, 431, 955–987. [Google Scholar] [CrossRef]
- Wang, Y. Chen inequalities for submanifolds of complex space forms and Sasakian space forms with quarter-symmetric connection. Int. J. Geom. Meth. Mod. Phy. 2019, 16, 1950118. [Google Scholar] [CrossRef]
- Blair, D.E. Contact Manifolds in Riemannian Geometry; Lecture Notes in Mathematics; Springer: New York, NY, USA, 1976; Volume 509. [Google Scholar]
- Yano, K.; Kon, M. Structures on Manifolds; World Scientific: Singapore, 1984. [Google Scholar]
- Aslam, M.; Siddqi, M.D.; Siddiqui, A.N. Generalized Wintgen inequality for bi-slant submanifolds in conformal Sasakian space form with quarter-symmetric connection. Arab. J. Math. Sci. 2025, 31, 2–21. [Google Scholar] [CrossRef]
- Verstralelen, L. Geometry of submanifolds 1, The first Casorati curvature indicatrices. Kragujevac J. Math. 2013, 37, 5–23. [Google Scholar]
- Kowalczyk, D. Casorati curvatures. Bull Transilvania Univ. Brasov Ser. III 2018, 50, 2009–2013. [Google Scholar]
- Lee, J.W.; Vilcu, G.E. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternion space forms. Taiwan. J. Math. 2015, 19, 691–702. [Google Scholar] [CrossRef]
- Blair, D.E. Riemannian Geometry of Contact and Simplectic Manifolds; Progress in Mathmatics; Birkhouser Boston, Inc.: Boston, MA, USA, 2002; Volume 203. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquib, M.; Aslam, M.; Bansal, P.; Al-Dayel, I. Sharp Curvature Inequalities for Submanifolds in Conformal Sasakian Space Forms Equipped with Quarter-Symmetric Metric Connection. Symmetry 2025, 17, 1514. https://doi.org/10.3390/sym17091514
Aquib M, Aslam M, Bansal P, Al-Dayel I. Sharp Curvature Inequalities for Submanifolds in Conformal Sasakian Space Forms Equipped with Quarter-Symmetric Metric Connection. Symmetry. 2025; 17(9):1514. https://doi.org/10.3390/sym17091514
Chicago/Turabian StyleAquib, Md, Mohd Aslam, Pooja Bansal, and Ibrahim Al-Dayel. 2025. "Sharp Curvature Inequalities for Submanifolds in Conformal Sasakian Space Forms Equipped with Quarter-Symmetric Metric Connection" Symmetry 17, no. 9: 1514. https://doi.org/10.3390/sym17091514
APA StyleAquib, M., Aslam, M., Bansal, P., & Al-Dayel, I. (2025). Sharp Curvature Inequalities for Submanifolds in Conformal Sasakian Space Forms Equipped with Quarter-Symmetric Metric Connection. Symmetry, 17(9), 1514. https://doi.org/10.3390/sym17091514