Review of Scenario Virtual Testing Technology for Autonomous Vehicles: Migration Challenges Between Symmetric Frameworks and Asymmetric Scenarios
Abstract
1. Introduction
2. Scenario Hazard Evaluation Method
2.1. Model-Driven Scenario Hazard Evaluation Method
2.2. Data-Driven Scenario Hazard Evaluation Method
3. Hazardous Scenario Generation and Generalization
3.1. Hazard Inversion Method Based on Scenario Elements
3.2. Data-Driven Intelligent Generation Method
4. Acceleration Evaluation Method
4.1. Coverage-Oriented Acceleration Evaluation Method
4.2. Hazard Rate-Oriented Acceleration Evaluation Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yassine, K.; Naima, A.O.; Dalil, I.; Vincent, V. Lateral control for autonomous wheeled vehicles: A technical review. Asian J. Control 2023, 14, 2539–2563. [Google Scholar]
- Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and Decision-Making for Autonomous Vehicles. Annu. Rev. Control Robot. Auton. Syst. 2018, 1, 187–210. [Google Scholar] [CrossRef]
- Liu, H.; Yan, S.; Shen, Y.; Li, C.; Zhang, Y.; Hussain, F. Model predictive control system based on direct yaw moment control for 4WID self-steering agriculture vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, F.; Mei, X.; Xue, B.; Wu, J.; Zhang, C. Autonomous Drifting like Professional Racing Drivers: A Survey. AppliedMath 2025, 5, 33. [Google Scholar] [CrossRef]
- Piazzoni, A.; Cherian, J.; Azhar, M.; Yap, J.Y.; Shung, J.L.W.; Vijay, R. ViSTA: A Framework for Virtual Scenario-based Testing of Autonomous Vehicles. In Proceedings of the 2021 IEEE International Conference on Artificial Intelligence Testing (AITest), Oxford, UK, 23–26 August 2021; Volume 1, pp. 143–150. [Google Scholar]
- Alghodhaifi, H.; Sridhar, L. Autonomous vehicle evaluation: A comprehensive survey on modeling and simulation approaches. IEEE Access 2021, 9, 151531–151566. [Google Scholar] [CrossRef]
- Donà, R.; Ciuffo, B. Virtual Testing of Automated Driving Systems. A Survey on Validation Methods. IEEE Access 2022, 10, 24349–24367. [Google Scholar] [CrossRef]
- Muhammad, A.; Li, W.; Hussain, S.; Muhammad, J.M.C.; Li, W.; Song, R.; Liu, C. Comparative Evaluation of Land Surface Temperature Images from Unmanned Aerial Vehicle and Satellite Observation for Agricultural Areas Using In Situ Data. Agriculture 2022, 12, 184. [Google Scholar] [CrossRef]
- Huang, X.; Wang, W.; Li, Z.; Wang, Q.; Zhu, C.; Chen, L. Design method and experiment of machinery for combined application of seed, fertilizer and herbicide. Int. J. Agric. Biol. Eng. 2019, 12, 63–71. [Google Scholar] [CrossRef]
- Hrica, J.K.; Bellanca, J.L.; Carr, J.L. A rapid review of collision avoidance and warning technologies for mining haul trucks. Min. Eng. 2023, 75, 1357–1389. [Google Scholar] [CrossRef]
- Hasiri, A.; Kermanshah, A. Exploring the Role of Autonomous Trucks in Addressing Challenges within the Trucking Industry: A Comprehensive Review. Systems 2024, 12, 320. [Google Scholar] [CrossRef]
- Yi, Z.; Liu, X.C.; Wei, R.; Grubesic, T.H. Snowplow Truck Performance Assessment and Feature Importance Analysis Using Machine-Learning Techniques. J. Transp. Eng. 2021, 147, 04020160.1–04020160.10. [Google Scholar] [CrossRef]
- Yuexia, C.; Long, C.; Ruochen, W.; Xing, X.; Yujie, S.; Yanling, L. Modeling and test on height adjustment system of electrically-controlled air suspension for agricultural vehicles. Int. J. Agric. Biol. Eng. 2016, 9, 40–47. [Google Scholar]
- Ahmed, S.; Qiu, B.; Ahmad, F.; Kong, C.; Xin, H. A State-of-the-Art Analysis of Obstacle Avoidance Methods from the Perspective of an Agricultural Sprayer UAV’s Operation Scenario. Agronomy 2021, 11, 1069. [Google Scholar] [CrossRef]
- Hang, J.; Yan, X.; Li, X.; Duan, K.; Yang, J.; Xue, Q. An improved automated braking system for rear-end collisions: A study based on a driving simulator experiment. J. Saf. Res. 2022, 80, 416–427. [Google Scholar] [CrossRef]
- Fu, C.; Sayed, T. Comparison of threshold determination methods for the deceleration rate to avoid a crash (DRAC)-based crash estimation. Accid. Anal. Prev. 2021, 153, 106051–106063. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Qin, Y.; Li, X.; Xie, J. Risk identification and conflict prediction from videos based on TTC-ML of a multi-lane weaving area. Sustainability 2022, 14, 4620. [Google Scholar] [CrossRef]
- Li, G.; Yang, Y.; Li, S.; Qu, X.; Lyu, N.; Li, S.E. Decision making of autonomous vehicles in lane change scenarios: Deep reinforcement learning approaches with risk awareness. Transp. Res. Part C Emerg. Technol. 2022, 134, 103452–103462. [Google Scholar] [CrossRef]
- Li, G.; Yang, Y.; Zhang, T.; Qu, X.; Cao, D.; Cheng, B.; Li, K. Risk assessment based collision avoidance decision-making for autonomous vehicles in multi-scenarios. Transp. Res. Part C Emerg. Technol. 2021, 122, 102820–102832. [Google Scholar] [CrossRef]
- Noh, S. Decision-Making Framework for Autonomous Driving at Road Intersections: Safeguarding Against Collision, Overly Conservative Behavior, and Violation Vehicles. IEEE Trans. Ind. Electron. 2019, 66, 3275–3286. [Google Scholar] [CrossRef]
- Hu, H.; Wang, Q.; Cheng, M.; Gao, Z. Cost-Sensitive Semi-Supervised Deep Learning to Assess Driving Risk by Application of Naturalistic Vehicle Trajectories. Expert Syst. Appl. 2021, 178, 115041–115053. [Google Scholar] [CrossRef]
- Shangguan, Q.; Fu, T.; Wang, J.; Fang, S.; Fu, L. A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns. Accid. Anal. Prev. 2022, 164, 106500–106510. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zhao, S.; Song, X.; Bao, s.; Li, M.; Huang, Z. An optimal hierarchical framework of the trajectory following by convex optimisation for highly automated driving vehicles. Veh. Syst. Dyn. 2019, 57, 1287–1317. [Google Scholar] [CrossRef]
- Yang, Z.S.; Yu, Y.; Yu, D.X.; Zhou, H.X.; Mo, X.L. APF-Based Car Following Behavior Considering Lateral Distance. Adv. Mech. Eng. 2013, 2013, 1255–1260. [Google Scholar] [CrossRef]
- Dixit, S.; Montanaro, U.; Fallah, S.; Dianati, M.; Oxtoby, D.; Mizutani, T.; Mouzakitis, A. Trajectory Planning for Autonomous High-Speed Overtaking using MPC with Terminal Set Constraints. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; Volume 4, pp. 1061–1068. [Google Scholar]
- Lu, B.; Li, G.; Yu, H.; Wang, H.; Hongwen, H. Adaptive Potential Field-Based Path Planning for Complex Autonomous Driving Scenarios. IEEE Access 2018, 8, 225294–225305. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Li, Y. The Driving Safety Field Based on Driver–Vehicle–Road Interactions. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2203–2214. [Google Scholar] [CrossRef]
- Li, L.H.; Gan, J.; Yi, Z.; Qu, X.; Ran, B. Risk perception and the warning strategy based on safety potential field theory. Accid. Anal. Prev. 2020, 148, 105805.1–105805.17. [Google Scholar] [CrossRef]
- Li, L.; Gan, J.; Ji, X.; Qu, X.; Ran, B. Dynamic driving risk potential field model under the connected and automated vehicles environment and its application in car-following modeling. IEEE Trans. Intell. Transp. Syst. 2022, 23, 122–141. [Google Scholar] [CrossRef]
- Wu, B.; Yan, Y.; Ni, D.; Li, L. A longitudinal car-following risk assessment model based on risk field theory for autonomous vehicles. Int. J. Transp. Sci. Technol. 2021, 10, 60–68. [Google Scholar] [CrossRef]
- Chen, W.; Li, A.; Jiang, H. Risk Assessment of Roundabout Scenarios in Virtual Testing Based on an Improved Driving Safety Field. Sensors 2024, 24, 5539. [Google Scholar] [CrossRef]
- Ahmed, S.; Qiu, B.; Kong, C.W.; Xin, H.; Ahmad, F.; Lin, J. Reliability assessment of repairable phased-mission system by Monte Carlo simulation based on modular sequence-enforcing fault tree model. Eksploat. Niezawodn. 2022, 22, 272–281. [Google Scholar]
- Li, C.; Ding, L.; Qi, F. Dynamic simulation of the probable propagation of a disaster in an engineering system using a scenario-based hybrid network model. IEEE Trans. Eng. Manag. 2022, 71, 1490–1503. [Google Scholar] [CrossRef]
- Kim, B.; Lim, S.; Shin, S.Y.; Yum, S.; Kim, Y.Y.; Yun, N.; Yu, S. Risk Assessment of Tractor-Related Hazards Based on Accident Cases. J. Agric. Saf. Health 2019, 25, 133–152. [Google Scholar] [CrossRef]
- Cai, Y.; Dai, L.; Wang, H.; Li, Z. Multi-Target Pan-Class Intrinsic Relevance Driven Model for Improving Semantic Segmentation in Autonomous Driving. IEEE Trans. Image Process. 2021, 30, 9069–9084. [Google Scholar] [CrossRef]
- Benrabah, M.; Mousse, C.O.; Randriamiarintsoa, E.; Chapuis, R.; Aufrère, R. A Review on Traversability Risk Assessments for Autonomous Ground Vehicles: Methods and Metrics. Sensors 2024, 24, 1909. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Xia, R.; Sun, H.; Yang, Y.; Huang, M. Construction and Simulation of Rear-End Conflicts Recognition Model Based on Improved TTC Algorithm. IEEE Access 2019, 7, 134763–134771. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Chen, L.; Wang, Y.; Okonkwo, C.E.; Yagoub, A.E.G.A.; Wahia, H.; Zhou, C. Application of ultrasound and its real-time monitoring of the acoustic field during processing of tofu: Parameter optimization, protein modification, and potential mechanism. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2747–2772. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, M.; Chen, X.; Zhang, H.; Wang, K.; Li, C.; Li, S.; Du, L. An Integrated Autonomous Dynamic Navigation Approach toward a Composite Air–Ground Risk Construction Scenario. Sensors 2023, 24, 221. [Google Scholar] [CrossRef]
- Gao, X.; Ye, C.; Ma, H. Research Advances in Preparation, Stability, Application, and Possible Risks of Nanoselenium: Focus on Food and Food-Related Fields. J. Agric. Food Chem. 2023, 71, 8731–8745. [Google Scholar] [CrossRef]
- Yu, S.Y.; Malawade, A.V.; Muthirayan, D.; Khargonekar, P.P.; Al Faruque, M.A. Scene-Graph Augmented Data-Driven Risk Assessment of Autonomous Vehicle Decisions. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7941–7951. [Google Scholar] [CrossRef]
- Lee, S.; Song, B.; Shin, J. Collision Prediction in an Integrated Framework of Scenario-Based and Data-Driven Approaches. IEEE Access 2024, 12, 55234–55247. [Google Scholar] [CrossRef]
- Kaia, S.; Roger, F.; Guikema, S.D.; Terje, A. Data-driven predictive modeling in risk assessment: Challenges and directions for proper uncertainty representation. Risk Anal. 2023, 43, 2644–2658. [Google Scholar]
- Amin, M.T.; Khan, F.; Ahmed, S.; Imtiaz, S. A novel data-driven methodology for fault detection and dynamic risk assessment. Can. J. Chem. Eng. 2020, 98, 2397–2416. [Google Scholar] [CrossRef]
- Maximilian, B.; Felix, L.; Günther, P. Categorizing data-driven methods for test scenario generation to assess automated driving systems. IEEE Access 2024, 12, 52030–52050. [Google Scholar] [CrossRef]
- Hao, K.; Cui, W.; Liu, L.; Pan, Y.; Yang, Z. Integrating Data-Driven and Knowledge-Driven Methodologies for Safety-Critical Scenario Generation in Autonomous Vehicle Validation. In Proceedings of the 2024 IEEE 24th International Conference on Software Quality, Cambridge, UK, 1–5 July 2024; Volume 1, pp. 970–981. [Google Scholar]
- Carraminana, D.; Bernardos, A.M.; Besada, J.A.; Casar, J.R. Towards resilient cities: A hybrid simulation framework for risk mitigation through data driven decision making. Simul. Model. Pract. Theory 2025, 133, 102924–102934. [Google Scholar] [CrossRef]
- Ahmed, S.; Qiu, B.; Kong, C.; Huang, X.; Ahmad, F.; Lin, J. A data-driven dynamic obstacle avoidance method for liquid-carrying plant protection UAVs. Agronomy 2022, 12, 873. [Google Scholar] [CrossRef]
- Cui, Y.; He, R.; Liu, S. Hydrogen leakage faults classification diagnosis based on data-driven in hydrogen supply system of fuel cell trucks. Int. J. Hydrogen Energy 2024, 49, 1473–1482. [Google Scholar] [CrossRef]
- Zhong, X.; Song, X.; Liu, G.; Zhao, W.; Fan, W. A data-driven method for remaining useful life prediction of rolling bearings under different working conditions. IEEE Trans. Reliab. 2023, 73, 1368–1379. [Google Scholar] [CrossRef]
- Peixoto, J.P.J.; Costa, D.G.; Portugal, P.; Vasques, F. Flood-resilient smart cities: A data-driven risk assessment approach based on geographical risks and emergency response infrastructure. Smart Cities 2024, 7, 662–679. [Google Scholar] [CrossRef]
- Wang, L.; Xie, J.; Luo, W.; Wang, Z.; Zhang, B.; Chen, M.; Tan, A.C. Effectiveness of data-driven wind turbine wake models developed by machine/deep learning with spatial-segmentation technique. Sustain. Energy Technol. Assess. 2022, 53, 102499. [Google Scholar] [CrossRef]
- Ankrah, A.A.; Kimotho, J.K.; Muvengei, O.M. Fusion of Model-Based and Data Driven Based Fault Diagnostic Methods for Railway Vehicle Suspension. J. Intell. Learn. Syst. Appl. 2020, 12, 51–62. [Google Scholar] [CrossRef]
- Mehta, S.; Yusuf, A.B.; Ghafari, S. Data-driven framework for pothole repair automation using unmanned ground vehicle fleets. Autom. Constr. 2025, 174, 106176–106187. [Google Scholar] [CrossRef]
- Watanabe, H.; Mal, T.; Wallner, J.; Dirndorfer, T.; Prokop, G. Methodology of Scenario Clustering for Predictive Safety Functions. Tag. Autom. Fahr. 2019, 1, 1–8. [Google Scholar]
- Wu, X.; Zhou, J.; Wu, B.; Sun, J.; Dai, C. Identification of tea varieties by mid-infrared diffuse reflectance spectroscopy coupled with a possibilistic fuzzy c-means clustering with a fuzzy covariance matrix. J. Food Process Eng. 2019, 42, 132988–133000. [Google Scholar] [CrossRef]
- Kiss, O.; Grossi, M.; Roggero, A. Importance sampling for stochastic quantum simulations. Quantum 2022, 7, 977–986. [Google Scholar] [CrossRef]
- Zhou, H.; Fu, H.; Wu, X.; Wu, B.; Dai, C. Discrimination of tea varietiesbased on FTIR spectroscopyandan adaptive improved possibilistic c-means clustering. J. Food Process. Preserv. 2020, 44, 14795–14812. [Google Scholar] [CrossRef]
- Wheeler, T.A.; Kochenderfer, M.J. Critical Factor Graph Situation Clusters for Accelerated Automotive Safety Validation. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; Volume 1, pp. 2133–2139. [Google Scholar]
- Menzel, T.; Bagschik, G.; Maurer, M. Scenarios for Development, Test and Validation of Automated Vehicles. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; Volume 1, pp. 1821–1827. [Google Scholar]
- Jesenski, S.; Stellet, J.E.; Schiegg, F.; Zollner, J.M. Generation of Scenes in Intersections for the Validation of Highly Automated Driving Functions. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; Volume 1, pp. 502–509. [Google Scholar]
- Wang, Y.; Zhao, L.; Wang, C.; Hu, J.; Guo, X.; Zhang, D.; Wu, W.; Zhou, F.; Ji, B. Protective effect of quercetin and chlorogenic acid, two polyphenols widely present in edible plant varieties, on visible light-induced retinal degeneration in vivo. J. Funct. Foods 2017, 33, 103–111. [Google Scholar] [CrossRef]
- Ding, W.; Lin, H.; Li, B.; Zhao, D. Semantically Adversarial Scene Generation With Explicit Knowledge Guidance. IEEE Trans. Intell. Transp. Syst. 2025, 26, 1510–1521. [Google Scholar] [CrossRef]
- Guneshka, S. Ontology-based corner case scenario simulation for autonomous driving. Karlsruher Inst. Technol. 2022, 1, 245–261. [Google Scholar]
- Gambi, A.; Huynh, T.; Fraser, G. Generating effective test cases for self-driving cars from police reports. In Proceedings of the the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Tallinn, Estonia, 26–30 August 2019; Volume 1, pp. 257–267. [Google Scholar]
- Wang, X.; Liu, Q.; Guo, F.; Fang, S.; Xu, X.; Chen, X. Causation analysis of crashes and near crashes using naturalistic driving data. Accid. Anal. Prev. 2022, 177, 106821–106830. [Google Scholar] [CrossRef]
- Bashetty, S.K.; Amor, H.B.; Fainekos, G. DeepCrashTest: Turning Dashcam Videos into Virtual Crash Tests for Automated Driving Systems. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; Volume 1, pp. 11353–11360. [Google Scholar]
- Tian, H.; Wu, G.; Yan, J.; Jiang, Y.; Wei, J. Generating critical test scenarios for autonomous driving systems via influential behavior patterns. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, Rochester, MI, USA, 10–14 October 2022; Volume 1, pp. 1–12. [Google Scholar]
- Zhang, X.; Yan, C. Building critical testing scenarios for autonomous driving from real accidents. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, Seattle, WA, USA, 17–21 July 2023; Volume 177, pp. 462–474. [Google Scholar]
- Wang, S.; Sheng, Z.; Xu, w.; Chen, T.; Zhu, J.; Zhang, S.; Yao, Y.; Ma, x. ADEPT: A testing platform for simulated autonomous driving. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, Rochester, MI, USA, 10–14 October 2022; Volume 1, pp. 1–4. [Google Scholar]
- Nguyen, V.; Alessio, G.; Jasim, A.; Gordon, F. CRISCE: Towards generating test cases from accident sketches. In Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings, Pittsburgh, PA, USA, 22–24 May 2022; Volume 1, pp. 339–340. [Google Scholar]
- Zhang, X.; Li, F.; Wu, X. CSG: Critical Scenario Generation from Real Traffic Accidents. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; Volume 1, pp. 1330–1336. [Google Scholar]
- Liu, H.; Zhang, L.; Hari, S.K.S.; Zhao, J. Safety-Critical Scenario Generation Via Reinforcement Learning Based Editing. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; Volume 1, pp. 14405–14412. [Google Scholar]
- Priisalu, M.; Ciprian, P.; Cristian, S. Varied realistic autonomous vehicle collision scenario generation. In Proceedings of the Candinavian Conference on Image Analysis, Sirkka, Finland, 18–21 April 2023; Springer Nature: Cham, Switzerland, 2023; Volume 1, pp. 354–372. [Google Scholar]
- Krajewski, R.; Moers, T.; Nerger, D.; Eckstein, L. Data-Driven Maneuver Modeling Using Generative Adversarial Networks and Variational Autoencoders for Safety Validation of Highly Automated Vehicles. In Proceedings of the The 21st IEEE International Conference on Intelligent Transportation Systems, Maui, HI, USA, 4–7 November 2018; Volume 1, pp. 2383–2390. [Google Scholar]
- Shuo, Z.; Xingbang, H.; Hejiao, W.H. An effective variational auto-encoder-based model for traffic flow imputation. Neural Comput. Appl. 2024, 36, 2617–2631. [Google Scholar]
- Zhang, Y.; Wang, S.; Chen, B.; Cao, J.; Huang, Z. TrafficGAN: Network-Scale Deep Traffic Prediction With Generative Adversarial Nets. IEEE Trans. Intell. Transp. Syst. 2021, 22, 219–230. [Google Scholar] [CrossRef]
- Demetriou, A.; Alfsvg, H.; Rahrovani, S.; Chehreghani, M.H. A Deep Learning Framework for Generation and Analysis of Driving Scenario Trajectories. SN Comput. Sci. 2023, 4, 251–260. [Google Scholar] [CrossRef]
- Tan, S.; Wong, K.; Wang, S.; Manivasagam, S.; Ren, M.; Urtasun, R. SceneGen: Learning to Generate Realistic Traffic Scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; Volume 1, pp. 892–901. [Google Scholar]
- Li, Y.; Zeng, F.; Han, C.; Feng, S. Vehicle Lane-Changing scenario generation using time-series generative adversarial networks with an Adaptative parameter optimization strategy. Accid. Anal. Prev. 2024, 205, 107667–107688. [Google Scholar] [CrossRef]
- Feng, L.; Li, Q.; Peng, Z.; Tan, S.; Zhou, B. Trafficgen: Learning to generate diverse and realistic traffic scenarios. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; Volume 1, pp. 3567–3575. [Google Scholar]
- Gu, S.; Chen, D.; Bao, J.; Wen, F.; Zhang, B.; Chen, D.; Yuan, L.; Guo, B. Vector Quantized Diffusion Model for Text-to-Image Synthesis. arXiv 2022, 1, 10696–10706. [Google Scholar]
- Yao, Z.; Xi, R.; Zhang, T.; Zhao, Y.; Tian, Y.; Hou, W. Construction and Enhancement of a Rural Road Instance Segmentation Dataset Based on an Improved StyleGAN2-ADA. Sensors 2025, 25, 2477. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Xu, C.; Arief, M.; Lin, H.; Li, B.; Zhao, D. A Survey on Safety-Critical Driving Scenario Generation—A Methodological Perspective. IEEE Trans. Intell. Transp. Syst. 2023, 24, 18–25. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, X.; Wu, B.; Tan, Y.; Liu, J. Qualitative Analysis of Lambda-Cyhalothrin on Chinese Cabbage Using Mid-Infrared Spectroscopy Combined with Fuzzy Feature Extraction Algorithms. Agriculture 2021, 11, 275. [Google Scholar] [CrossRef]
- De, S.; Bhakta, I.; Phadikar, S.; Majumder, K. Agricultural Image Augmentation with Generative Adversarial Networks GANs. In Proceedings of the International Conference on Computational Intelligence in Pattern Recognition, Howrah, India, 23–24 April 2022; Volume 1, pp. 335–344. [Google Scholar]
- Chang, C.; Zhang, J.; Ge, J.; Zhang, Z.; Wei, J.; Li, L.; Wang, F.Y. VistaScenario: Interaction Scenario Engineering for Vehicles with Intelligent Systems for Transport Automation. IEEE Trans. Intell. Veh. 2024, 1, 1–17. [Google Scholar] [CrossRef]
- Tong, Z.; Zhang, S.; Yu, J.; Zhang, X.; Wang, B.; Zheng, W. A Hybrid Prediction Model for CatBoost Tomato Transpiration Rate Based on Feature Extraction. Agronomy 2023, 13, 2371. [Google Scholar] [CrossRef]
- Li, Q.; Peng, Z.; Feng, L.; Zhang, Q.; Xue, Z.; Zhou, B. MetaDrive: Composing Diverse Driving Scenarios for Generalizable Reinforcement Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 45, 3461–3475. [Google Scholar] [CrossRef]
- Batsch, F.; Kanarachos, S.; Cheah, M.; Ponticelli, R.; Blundell, M. A taxonomy of validation strategies to ensure the safe operation of highly automated vehicles. J. Intell. Transp. Syst. 2020, 26, 14–33. [Google Scholar] [CrossRef]
- Zhao, S.; Wei, Z.; Wang, P.; Ma, T.; Guo, K. An objective evaluation method for automated vehicle virtual test. Expert Syst. Appl. 2022, 206, 117940. [Google Scholar] [CrossRef]
- Schuldt, F.; Reschka, A.; Maurer, M. A Method for an Efficient, Systematic Test Case Generation for Advanced Driver Assistance Systems in Virtual Environments. Automot. Syst. Eng. 2018, 1, 147–175. [Google Scholar]
- Zheng, G. Design and verification of use case generation algorithm based on multiple combination tests. Int. J.-Bio-Inspired Comput. 2024, 23, 69–79. [Google Scholar] [CrossRef]
- Shu, H.; Lv, H.; Liu, K.; Yuan, K.; Tang, X. Test scenarios construction based on combinatorial testing strategy for automated vehicles. IEEE Access 2021, 9, 115019–115029. [Google Scholar] [CrossRef]
- Gao, F.; Duan, J.; He, Y.; Wang, Z. A Test Scenario Automatic Generation Strategy for Intelligent Driving Systems. Math. Probl. Eng. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Bogdoll, D.; Stefani, G.; Marius, Z. One ontology to rule them all: Corner case scenarios for autonomous driving. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer Nature: Cham, Switzerland, 2022; Volume 1, pp. 409–425. [Google Scholar]
- Li, Y.; Tao, J.; Wotawa, F. Ontology-based Test Generation for Automated and Autonomous Driving Functions. Inf. Softw. Technol. 2019, 117, 106200–106208. [Google Scholar] [CrossRef]
- Wotawa, F.; Bozic, J.; Li, Y. Ontology-based Testing: An Emerging Paradigm for Modeling and Testing Systems and Software. In Proceedings of the 2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal, 24–28 October 2020; Volume 1, pp. 14–17. [Google Scholar]
- Artiomov, N.; Antoshchenkov, R.; Antoshchenkov, V.; Ayubov, A. Innovative approach to agricultural machinery testing. In Proceedings of the 20th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 26–28 May 2021; Volume 1, pp. 692–698. [Google Scholar]
- Liang, Z.; Li, Y.; Baerdemaeker, J.D.; Xu, L.; Saeys, W. Development and testing of a multi-duct cleaning device for tangential-longitudinal flow rice combine harvesters. Biosyst. Eng. 2019, 182, 95–106. [Google Scholar] [CrossRef]
- Han, L.; Mo, M.; Ma, H.; Kumi, F.; Mao, H. Design and Test of a Lateral-Approaching and Horizontal-Pushing Transplanting Manipulator for Greenhouse Seedlings. Appl. Eng. Agric. 2023, 35, 325–338. [Google Scholar] [CrossRef]
- Szymczak, T.; Cholewiński, S.; Łączyński, J. Vehicle Coupling Zone as a Special Inspection Region for Road Traffic Safety. Transp. Samoch. 2024, 70, 29–38. [Google Scholar]
- Yang, Q.; Shi, L.; Shi, A.; He, M.; Zhao, X.; Zhang, L.; Addy, M. Determination of key soil characteristic parameters using angle of repose and direct shear stress test. Int. J. Agric. Biol. Eng. 2023, 16, 143–150. [Google Scholar] [CrossRef]
- Kosobudzki, M. Preliminary selection of road test sections for high-mobility wheeled vehicle testing under proving ground conditions. Appl. Sci. 2022, 12, 3513. [Google Scholar] [CrossRef]
- Zheng, W.; Lan, R.; Li, Z.; Yang, L.; Gao, L.; Jingxin, X. A Hybrid Approach for Soil Total Nitrogen Anomaly Detection Integrating Machine Learning and Spatial Statistics. Agronomy 2023, 13, 2669. [Google Scholar] [CrossRef]
- Tuncali, C.E.; Fainekos, G.; Prokhorov, D.; Ito, H.; Kapinski, J. Requirements-Driven Test Generation for Autonomous Vehicles With Machine Learning Components. IEEE Trans. Intell. Veh. 2020, 5, 265–280. [Google Scholar] [CrossRef]
- Zhao, D.; Lam, H.; Peng, H.; Bao, S.; Leblanc, D.J.; Nobukawa, K.; Pan, C.S. Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques. IEEE Trans. Intell. Transp. Syst. 2017, 18, 595–607. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Zou, Y.; Sun, J. Accelerated testing for automated vehicles safety evaluation in cut-in scenarios based on importance sampling, genetic algorithm and simulation applications. J. Intell. Connect. Veh. 2018, 1, 28–38. [Google Scholar] [CrossRef]
- Huang, Z.; Lam, H.; Leblanc, D.J.; Zhao, D. Accelerated Evaluation of Automated Vehicles Using Piecewise Mixture Models. IEEE Trans. Intell. Transp. Syst. 2017, 19, 2845–2855. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Ye, T. Accelerated testing for highly automated vehicles: A combined method based on importance sampling and normalizing flows. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems, Macau, China, 8–12 October 2022; Volume 1, pp. 574–579. [Google Scholar]
- Wang, X.; Zhang, S.; Lee, K.H.; Peng, H. An Interaction-aware Evaluation Method for Highly Automated Vehicles. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference, Indianapolis, IN, USA, 19–22 September 2021; Volume 1, pp. 394–401. [Google Scholar]
- Tuncali, C.E.; Fainekos, G. Rapidly-exploring Random Trees for Testing Automated Vehicles. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference—ITSC, Auckland, New Zealand, 27–30 October 2019; Volume 1, pp. 661–666. [Google Scholar]
- Kim, Y.; Tay, S.; Guanetti, J.; Borrelli, F.; Miller, R. Hardware-In-the-Loop for Connected Automated Vehicles Testing in Real Traffic. arXiv 2019, 19, 052–062. [Google Scholar]
- Feng, S.; Yan, X.; Sun, H.; Feng, Y.; Liu, H.X. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment. Nat. Commun. 2021, 12, 748–756. [Google Scholar] [CrossRef]
- Gerdan Koc, D.; Mustafa, V. Development and Performance Analysis of an Autonomous Agricultural Vehicle for Fruit Transportation. J. Field Robot. 2025, 1, 1–10. [Google Scholar] [CrossRef]
- Oszczypala, M.; Konwerski, J.; Ziolkowski, J.; Malachowski, J. Copula-Based Reliability Analysis of Vehicles Based on Censored Failures Data Using Reliability Importance Measures. IEEE Access 2024, 12, 154119–154137. [Google Scholar] [CrossRef]
- Tang, N.; Sun, J.; Yao, K.; Zhou, X.; Tian, Y.; Cao, Y.; Nirere, A. Identification of Lycium barbarum varieties based on hyperspectral imaging technique and competitive adaptive reweighted sampling-whale optimization algorithm-support vector machine. J. Food Process Eng. 2020, 41, 13603–13611. [Google Scholar] [CrossRef]
- Li, J.; Azizov, D.; Li, Y.; Liang, S. Contrastive Continual Learning with Importance Sampling and Prototype-Instance Relation Distillation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 13554–13562. [Google Scholar]
Scenario | Description | Indicators | Formulas and Parameter Explanations |
---|---|---|---|
Tight Following | Risk of rear-end collision due to too closely following distance. | THW, Modified Time Headway (mTHW) | where D is the longitudinal distance between the host vehicle and the background vehicle, is the speed of the host vehicle, and is the vehicle reaction time. |
Host Vehicle Lane Changing | Risk of lateral/ longitudinal conflict. | Lateral Safety Distance (LSD), Lane-changing Time to Collision (LTC) | where are the current longitudinal and lateral positions of the host vehicle, are the current longitudinal and lateral positions of the background vehicle, and is the speed of the background vehicle. |
Leading Vehicle Cutting In | Risk of emergency braking/evasion for the host vehicle. | Minimum Longitudinal Time to Conflict (mTTC), Dynamic Safety Distance (DSD) | where is the maximum deceleration of the host vehicle. |
Opposite Dir- ection Conflict | Risk of meeting vehicles due to insufficient lateral space. | Lateral Conflict Probability (LCP), Opposite-direction Minimum Safety Distance (OSD) | where is the actual available lateral width of the road, is the minimum lateral width required for the safe meeting of vehicles, is the standard deviation of the uncertainty of the lateral width, and is the lateral safety margin. |
Turning Conflict | Risk of cross-conflict (opposite direction, same direction) | Turning Time to Collision (), Steering Safety Angle (SSA) | where is the longitudinal distance from the conflict point to the origin, is the steering angle of the host vehicle, and is the driving direction angle of the background vehicle. |
Method Type | Core Principle | Advantages | Disadvantages | Application Scenarios |
---|---|---|---|---|
RL | Guides agent to explore hazard scenarios through risk reward mechanisms. | Proactively discovers hazardous scenarios. | Requires precise environment modeling. | Complex interactive scenarios (multi- vehicle games). |
GAN | Generator and discriminator adversarial training to learn real scenario distributions. | Proactively discovers hazardous scenarios. | Difficult to maintain long-term temporal consistency. | Single-vehicle behavior simulation (lane change/ overtaking). |
VAE | Encoder–decoder framework learns latent space distribution of scenarios. | Generates smooth and continuous scenarios. | Weak in multi-agent interaction modeling. | Basic scenario element combinations. |
Autoreg- ressive Model | Recursively predicts future states based on historical scenario elements. | Maintains long-term temporal rationality. | Low generation efficiency. | Continuous hazardous event evolution. |
Flow Model | Establishes mapping between distributions and scenarios through invertible transformations. | Precisely controls generated scenario attributes. | Sensitive to training data quality. | High-fidelity physical scenarios. |
Diffusion Model | Generates high-quality scenarios through gradual denoising process. | Produces scenarios with rich details. | Poor controllability. | Complex environment detail reconstruction. |
Method | Conflict | Crash | Injury |
---|---|---|---|
Zhao [107] | 1748 | 135,388 | 127,959 |
Xu [108] | 862 | 66,123 | 79,744 |
Huang [109] | 613 | 56,872 | 46,761 |
Zhang [110] | 298 | 21,916 | 29,259 |
Method | Advantages | Disadvantages |
---|---|---|
MC | Simple implementation, parallelizable | Inefficient for rare events, high variance |
MCMC | Handles complex distributions, theoretical guarantees | Slow convergence, Sensitive to initialization |
Splitting | Efficient for dynamic systems, good parallelism | Difficult threshold setting, P degeneracy |
Subset Simulation | Effective for extremely rare events, avoids direct sampling | Computationally intensive, sensitive to level selection |
IS | Fast convergence, variance reduction | Requires good proposal distribution, degrades in high dimensions |
RL | Discovers unknown hazards, adaptive exploration | High training cost, reward design sensitivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Jiang, H.; Sun, T. Review of Scenario Virtual Testing Technology for Autonomous Vehicles: Migration Challenges Between Symmetric Frameworks and Asymmetric Scenarios. Symmetry 2025, 17, 1503. https://doi.org/10.3390/sym17091503
Chen Y, Jiang H, Sun T. Review of Scenario Virtual Testing Technology for Autonomous Vehicles: Migration Challenges Between Symmetric Frameworks and Asymmetric Scenarios. Symmetry. 2025; 17(9):1503. https://doi.org/10.3390/sym17091503
Chicago/Turabian StyleChen, Yixiao, Haobin Jiang, and Ting Sun. 2025. "Review of Scenario Virtual Testing Technology for Autonomous Vehicles: Migration Challenges Between Symmetric Frameworks and Asymmetric Scenarios" Symmetry 17, no. 9: 1503. https://doi.org/10.3390/sym17091503
APA StyleChen, Y., Jiang, H., & Sun, T. (2025). Review of Scenario Virtual Testing Technology for Autonomous Vehicles: Migration Challenges Between Symmetric Frameworks and Asymmetric Scenarios. Symmetry, 17(9), 1503. https://doi.org/10.3390/sym17091503