Patterns of Directional and Fluctuating Asymmetry in Southern Ocean Sea Urchins
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Morphometrics Analyses
3. Results
3.1. Directional Asymmetry
3.2. Fluctuating Asymmetry
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klingenberg, C.P. Analyzing fluctuating asymmetry with geometric morphometrics: Concepts, methods, and applications. Symmetry 2015, 7, 843–934. [Google Scholar] [CrossRef]
- Crow, W. Symmetry in organisms. Am. Nat. 1928, 62, 207–227. [Google Scholar] [CrossRef]
- Gerhart, J. Cell, embryos, and evolution. Blackwell Sci. 1997, 71, 277–279. [Google Scholar]
- Manuel, M. Early evolution of symmetry and polarity in metazoan body plans. Comptes Rendus Biol. 2009, 332, 184–209. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, C.; Spring, J. Expression pattern of the homeobox gene Not in the basal metazoan Trichoplax adhaerens. Gene Expr. Patterns 2004, 4, 443–447. [Google Scholar] [CrossRef]
- Beklemishev, V.N. Principles of Comparative Anatomy of Invertebrates: Promorphology, 3rd ed.; Oliver & Boyd: Edinburgh, UK, 1969; Volume 1, p. 529. [Google Scholar]
- Ranjan, S.; Gautam, A. Bilateral Symmetry. In Encyclopedia of Animal Cognition and Behavior; Springer: Berlin/Heidelberg, Germany, 2022; pp. 783–785. [Google Scholar]
- Palmer, A.R. Animal asymmetry. Curr. Biol. 2009, 19, R473–R477. [Google Scholar] [CrossRef]
- Hollo, G. A new paradigm for animal symmetry. Interface Focus 2015, 5, 20150032. [Google Scholar] [CrossRef]
- Benítez, H.; Lemic, D.; Villalobos-Leiva, A.; Bažok, R.; Órdenes-Claveria, R.; Pajač Živković, I.; Mikac, K. Breaking Symmetry: Fluctuating Asymmetry and Geometric Morphometrics as Tools for Evaluating Developmental Instability under Diverse Agroecosystems. Symmetry 2020, 12, 1789. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Developmental instability as a research tool: Using patterns of fluctuating asymmetry to infer the developmental origins of morphological integration. In Developmental Instability: Causes and Consequences; Oxford Academic: New York, NY, USA, 2003; pp. 427–442. [Google Scholar]
- Zakharov, V.M.; Trofimov, I.E. Fluctuating asymmetry as an indicator of stress. Emerg. Top. Life Sci. 2022, 6, 295–301. [Google Scholar] [CrossRef]
- Pelabon, C.; Hansen, T.F. On the adaptive accuracy of directional asymmetry in insect wing size. Evolution 2008, 62, 2855–2867. [Google Scholar] [CrossRef]
- Benítez, H.A.; Lemic, D.; Püschel, T.A.; Virić Gašparić, H.; Kos, T.; Barić, B.; Bažok, R.; Pajač Živković, I. Fluctuating asymmetry indicates levels of disturbance between agricultural productions: An example in Croatian population of Pterostichus melas melas (Coleptera: Carabidae). Zool. Anz. 2018, 276, 42–49. [Google Scholar] [CrossRef]
- Scalici, M.; Traversetti, L.; Spani, F.; Malafoglia, V.; Colamartino, M.; Persichini, T.; Cappello, S.; Mancini, G.; Guerriero, G.; Colasanti, M. Shell fluctuating asymmetry in the sea-dwelling benthic bivalve Mytilus galloprovincialis (Lamarck, 1819) as morphological markers to detect environmental chemical contamination. Ecotoxicology 2017, 26, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.M. Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality. Environ. Pollut. 1993, 82, 207–211. [Google Scholar] [CrossRef]
- Oleksyk, T.K.; Novak, J.M.; Purdue, J.R.; Gashchak, S.P.; Smith, M.H. High levels of fluctuating asymmetry in populations of Apodemus flavicollis from the most contaminated areas in Chornobyl. J. Environ. Radioact. 2004, 73, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Wilsey, B.J.; Haukioja, E.; Koricheva, J.; Sulkinoja, M. Leaf Fluctuating Asymmetry Increases with Hybridization and Elevation in Tree-Line Birches. Ecology 1998, 79, 2092–2099. [Google Scholar] [CrossRef]
- Smith, D.R.; Crespi, B.J.; Bookstein, F.L. Fluctuating asymmetry in the honey bee, Apis mellifera: Effects of ploidy and hybridization. J. Evol. Biol. 2008, 10, 551–574. [Google Scholar] [CrossRef]
- Lens, L.; Van Dongen, S.; Kark, S.; Matthysen, E. Fluctuating asymmetry as an indicator of fitness: Can we bridge the gap between studies? Biol. Rev. 2002, 77, 27–38. [Google Scholar] [CrossRef]
- Hendrickx, F.; Maelfait, J.P.; Lens, L. Relationship between fluctuating asymmetry and fitness within and between stressed and unstressed populations of the wolf spider Pirata piraticus. J. Evol. Biol. 2003, 16, 1270–1279. [Google Scholar] [CrossRef]
- Zakharov, V.M.; Shadrina, E.G.; Trofimov, I.E. Fluctuating asymmetry, developmental noise and developmental stability: Future prospects for the population developmental biology approach. Symmetry 2020, 12, 1376. [Google Scholar] [CrossRef]
- Spani, F.; Scalici, M.; Crandall, K.A.; Piras, P. Claw asymmetry in crabs: Approaching an old issue from a new point of view. Biol. J. Linn. Soc. 2020, 129, 162–176. [Google Scholar] [CrossRef]
- Palmer, A.R.; Strobeck, C. Fluctuating asymmetry: Measurement, analysis, patterns. Annu. Rev. Ecol. Syst. 1986, 17, 391–421. [Google Scholar] [CrossRef]
- Van Valen, L. A study of fluctuating asymmetry. Evolution 1962, 16, 125–142. [Google Scholar] [CrossRef]
- Leamy. Heritability of directional and fluctuating asymmetry for mandibular characters in random-bred mice. J. Evol. Biol. 1999, 12, 146–155. [Google Scholar] [CrossRef]
- Budečević, S.; Manitašević Jovanović, S.; Vuleta, A.; Tucić, B.; Klingenberg, C.P. Directional asymmetry and direction-giving factors: Lessons from flowers with complex symmetry. Evol. Dev. 2022, 24, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.R. Antisymmetry. In Variation; Elsevier: Amsterdam, The Netherlands, 2005; pp. 359–397. [Google Scholar]
- Hoso, M.; Asami, T.; Hori, M. Right-handed snakes: Convergent evolution of asymmetry for functional specialization. Biol. Lett. 2007, 3, 169–172. [Google Scholar] [CrossRef]
- Breno, M.; Bots, J.; Van Dongen, S. Heritabilities of directional asymmetry in the fore-and hindlimbs of rabbit fetuses. PLoS ONE 2013, 8, e76358. [Google Scholar] [CrossRef] [PubMed]
- Hodin, J.; Lutek, K.; Heyland, A. A newly identified left–right asymmetry in larval sea urchins. R. Soc. Open Sci. 2016, 3, 160139. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.P. Directional selection on directional asymmetry: Testes size and secondary sexual characters in birds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1994, 258, 147–151. [Google Scholar]
- Okumura, T.; Utsuno, H.; Kuroda, J.; Gittenberger, E.; Asami, T.; Matsuno, K. The development and evolution of left-right asymmetry in invertebrates: Lessons from Drosophila and snails. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2008, 237, 3497–3515. [Google Scholar] [CrossRef]
- Cheng, R.-C.; Kuntner, M. Disentangling the size and shape components of sexual dimorphism. Evol. Biol. 2015, 42, 223–234. [Google Scholar] [CrossRef]
- Ramirez-Santana, B.P.; Alvarez-Garcia, I.L.; Avila-Poveda, O.H.; Arellano-Martinez, M.; Ospina-Garcés, S.M. Seasonal dimorphism as an expression of sexual dimorphism: Influence of gonad maturity on the body shape of a rocky intertidal polyplacophoran. Zoology 2024, 167, 126224. [Google Scholar] [CrossRef]
- Huber, B.A.; Sinclair, B.J.; Schmitt, M. The evolution of asymmetric genitalia in spiders and insects. Biol. Rev. 2007, 82, 647–698. [Google Scholar] [CrossRef] [PubMed]
- Bookstein, F.L. Foundations of morphometrics. Annu. Rev. Ecol. Syst. 1982, 13, 451–470. [Google Scholar] [CrossRef]
- Rohlf, F.J. Morphometrics. Annu. Rev. Ecol. Syst. 1990, 21, 299–316. [Google Scholar] [CrossRef]
- Koehler, R. An Account of the Deep-Sea Asteroidea Collected by the Royal Indean Marine Survey Ship; Indian Museum: Calcutta, India, 1909; Volume 1. [Google Scholar]
- David, B.; Mooi, R. An echinoid that “gives birth”: Morphology and systematics of a new Antarctic species, Urechinus mortenseni (Echinodermata, Holasteroida). Zoomorphology 1990, 110, 75–89. [Google Scholar] [CrossRef]
- David, B.; Choné, T.; Mooi, R.; De Ridder, C. Synopses of the Antarctic benthos. In Antarctic Echinoidea; A.R.G. Gantner: San Diego, CA, USA, 2005; Volume 10. [Google Scholar]
- Minin, K.V.; Mironov, A.N.; Petrov, N.B.; Vladychenskaya, I.P. Evolutionary and biogeographic patterns in the deep-sea echinoid families Pourtalesiidae Agassiz 1881 and Ceratophysidae fam. nov.(Echinoidea). Zool. J. Linn. Soc. 2024, 202, zlae034. [Google Scholar] [CrossRef]
- Palmer, A.R. Fluctuating asymmetry analyses: A primer. In Proceedings of the Developmental Instability: Its Origins and Evolutionary Implications, Tempe, AZ, USA, 14–15 June 1993; pp. 335–364. [Google Scholar]
- Hou, M.; Fagan, M. Assessments of bilateral asymmetry with application in human skull analysis. PLoS ONE 2021, 16, e0258146. [Google Scholar] [CrossRef]
- Parés-Casanova, P.M.; Salamanca-Carreño, A.; Crosby-Granados, R.A.; Bentez-Molano, J. A comparison of traditional and geometric morphometric techniques for the study of basicranial morphology in horses: A case study of the Araucanian Horse from Colombia. Animals 2020, 10, 118. [Google Scholar] [CrossRef]
- Dryden, I.L.; Mardia, K.V. Size and shape analysis of landmark data. Biometrika 1992, 79, 57–68. [Google Scholar] [CrossRef]
- Mortensen, T. A Monograph of the Echinoidea; CA Reitzel: Waterloo, ON, Canada, 1928; Volume 1. [Google Scholar]
- Kier, P.M. The poor fossil record of the regular echinoid. Paleobiology 1977, 3, 168–174. [Google Scholar] [CrossRef]
- Solovjev, A. Symmetry, asymmetry, and dissymmetry in echinoids. Paleontol. J. 2014, 48, 1237–1242. [Google Scholar] [CrossRef]
- Smith, A.B.; Kroh, A. Phylogeny of sea urchins. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 38, pp. 1–14. [Google Scholar]
- Grabowsky, G.L. Symmetry, locomotion, and the evolution of an anterior end: A lesson from sea urchins. Evolution 1994, 48, 1130–1146. [Google Scholar] [CrossRef] [PubMed]
- Stockley, B.; Smith, A.B.; Littlewood, T.; Lessios, H.A.; Mackenzie-Dodds, J.A. Phylogenetic relationships of spatangoid sea urchins (Echinoidea): Taxon sampling density and congruence between morphological and molecular estimates. Zool. Scr. 2005, 34, 447–468. [Google Scholar] [CrossRef]
- Solovjev, A. Symmetry of the sea urchins Spatangoida. Byull. Mosk. Ova Ispyt. Prir. Otd. Geol. 1983, 58, 45. [Google Scholar]
- Saucede, T.; Alibert, P.; Laurin, B.; David, B. Environmental and ontogenetic constraints on developmental stability in the spatangoid sea urchin Echinocardium (Echinoidea). Biol. J. Linn. Soc. 2006, 88, 165–177. [Google Scholar] [CrossRef]
- Schlüter, N. Ecophenotypic variation and developmental instability in the Late Cretaceous echinoid Micraster brevis (Irregularia; Spatangoida). PLoS ONE 2016, 11, e0148341. [Google Scholar] [CrossRef]
- Tkacheva, G. Postlarval Development of the Cretaceous Hemiaster akkaptschigensis Schmidt, 1962 and the Extant Holanthus expergitus (Lovén, 1874), and Their Significance for the Systematics of Hemiasteridae (Echinoidea, Spatangoida). Paleontol. J. 2024, 58, S164–S181. [Google Scholar] [CrossRef]
- Stige, L.C.; David, B.; Alibert, P. On hidden heterogeneity in directional asymmetry—can systematic bias be avoided? J. Evol. Biol. 2006, 19, 492–499. [Google Scholar] [CrossRef]
- Lane, A. Ecotoxicological Studies of the Effects of Heavy Metals and Hydrocarbons on Antarctic and Temperate Echinoderms. Ph.D. Thesis, University of Tasmania, Newnham, Australia, 2005. [Google Scholar]
- Gil, D.G.; Zaixso, H.E.; Tolosano, J.A. Brooding of the sub-Antarctic heart urchin, Abatus cavernosus (Spatangoida: Schizasteridae), in southern Patagonia. Mar. Biol. 2009, 156, 1647–1657. [Google Scholar] [CrossRef]
- Mesphoulhé, P.; David, B. Stratégie de croissance d’un oursin subantarctique: Abatus cordatus des îles Kerguelen. Comptes Rendus l’Académie Sci. Série 3 Sci. Vie 1992, 314, 205–211. [Google Scholar]
- Gil, D.G.; Zaixso, H.E.; Tolosano, J.A. Sex-specific differences in gonopore and gonadal growth trajectories in the brooding sea urchin, Abatus cavernosus (Spatangoida). Invertebr. Biol. 2020, 139, e12278. [Google Scholar] [CrossRef]
- Moya, F.; Hernandez, J.; Suazo, M.J.; Saucede, T.; Brickle, P.; Poulin, E.; Benitez, H.A. Deciphering the Hearts: Geometric Morphometrics Reveals Shape Variation in Abatus Sea Urchins across Subantarctic and Antarctic Seas. Animals 2024, 14, 2376. [Google Scholar] [CrossRef]
- Diaz, A.; González-Wevar, C.A.; Maturana, C.S.; Palma, A.T.; Poulin, E.; Gerard, K. Restricted geographic distribution and low genetic diversity of the brooding sea urchin Abatus agassizii (Spatangoidea: Schizasteridae) in the South Shetland Islands: A bridgehead population before the spread to the northern Antarctic Peninsula? Rev. Chil. Hist. Nat. 2012, 85, 457–468. [Google Scholar] [CrossRef]
- Delleuze, M.; Schwob, G.; Orlando, J.; Gerard, K.; Saucède, T.; Brickle, P.; Poulin, E.; Cabrol, L. Habitat specificity modulates the bacterial biogeographic patterns in the Southern Ocean. FEMS Microbiol. Ecol. 2024, 100, fiae134. [Google Scholar] [CrossRef]
- Moya, F.; Maturana, C.; Gerard, K.; Díaz, A.; Cabrol, L.; Delleuze, M.; Poulin, E. Records of Sea Urchins Species of Genus Abatus in Antarctic and Subantarctic Environments; Ministerio del Medio Ambiente de Chile: Santiago, Chile, 2024. [CrossRef]
- Klingenberg, C.P. How exactly did the nose get that long? A critical rethinking of the Pinocchio effect and how shape changes relate to landmarks. Evol. Biol. 2021, 48, 115–127. [Google Scholar] [CrossRef]
- Rohlf, F.J. The tps series of software. Hystrix 2015, 26, 9–12. [Google Scholar]
- Rohlf, F.J.; Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 1990, 39, 40–59. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, W. Shoelace Formula: Connecting the Area of a Polygon and the Vector Cross Product. Math. Teach. 2017, 110, 631–636. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Wilcoxon, F. Some uses of statistics in plant pathology. Biom. Bull. 1945, 1, 41–45. [Google Scholar] [CrossRef]
- Berry, K.J.; Johnston, J.E.; Mielke, P.W., Jr. Permutation methods. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 527–542. [Google Scholar] [CrossRef]
- Wissler, C. The Spearman correlation formula. Science 1905, 22, 309–311. [Google Scholar] [CrossRef]
- Jadwiszczak, P. Rundom Projects: An Application for Randomization and Bootstrap Testing, v1.1; ResearchGate GmbH: Berlin, Germany, 2003. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Klingenberg, C.P.; McIntyre, G.S. Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 1998, 52, 1363–1375. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef]
- Baken, E.K.; Collyer, M.L.; Kaliontzopoulou, A.; Adams, D.C. geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 2021, 12, 2355–2363. [Google Scholar] [CrossRef]
- Magniez, P. Reproductive cycle of the brooding echinoid Abatus cordatus (Echinodermata) in Kerguelen (Antarctic Ocean): Changes in the organ indices, biochemical composition and caloric content of the gonads. Mar. Biol. 1983, 74, 55–64. [Google Scholar] [CrossRef]
- Slatkin, M. Ecological causes of sexual dimorphism. Evolution 1984, 38, 622–630. [Google Scholar] [CrossRef]
- Rufino, M.; Abelló, P.; Yule, A.B. Male and female carapace shape differences in Liocarcinus depurator (Decapoda, Brachyura): An application of geometric morphometric analysis to crustaceans. Ital. J. Zool. 2004, 71, 79–83. [Google Scholar] [CrossRef]
- Ismail, T.G. Seasonal shape variations, ontogenetic shape changes, and sexual dimorphism in a population of land isopod Porcellionides pruinosus: A geometric morphometric study. J. Basic Appl. Zool. 2021, 82, 13. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Size, shape, and form: Concepts of allometry in geometric morphometrics. Dev. Genes Evol. 2016, 226, 113–137. [Google Scholar] [CrossRef]
- Ziegler, A.; Mooi, R.; Rolet, G.; De Ridder, C. Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea). BMC Evol. Biol. 2010, 10, 313. [Google Scholar] [CrossRef]
- Ziegler, A. Rediscovery of an internal organ in heart urchins (Echinoidea: Spatangoida): Morphology and evolution of the intestinal caecum. Org. Divers. Evol. 2014, 14, 383–395. [Google Scholar] [CrossRef]
- Lawrence, J.M.; Pomory, C.M.; Sonnenholzner, J.; Chao, C.-M. Bilateral symmetry of the petals in Mellita tenuis, Encope micropora, and Arachnoides placenta (Echinodermata: Clypeasteroida). Invertebr. Biol. 1998, 117, 94–100. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Individual variation of ontogenies: A longitudinal study of growth and timing. Evolution 1996, 50, 2412–2428. [Google Scholar] [CrossRef]
- McNamara, K.J. Plate translocation in spatangoid echinoids: Its morphological, functional and phylogenetic significance. Paleobiology 1987, 13, 312–325. [Google Scholar] [CrossRef]
- Paul, C.R.; Hotchkiss, F.H. Origin and significance of Lovén’s Law in echinoderms. J. Paleontol. 2020, 94, 1089–1102. [Google Scholar] [CrossRef]
- David, B.; Mooi, R.; Telford, M. The ontogenetic basis of Lovén’s Rule clarifies homologies of the echinoid peristome. In Echinoderm Research 1995; Emson, R.H., Smith, A.B., Campbell, A.C., Eds.; A. A. Balkema: Rotterdam, The Netherlands, 1995; pp. 155–164. [Google Scholar]
- Lovén, S. Études sur les echinoidées. K. Sven. Vetensk-Akad. Handl. New Ser. 1874, 11, 1–91. [Google Scholar]
- McNamara, K.J. The role of heterochrony in the evolution of spatangoid echinoids. Geobios 1989, 22, 283–295. [Google Scholar] [CrossRef]
- McNamara, K.J. Heterochrony: The evolution of development. Evol. Educ. Outreach 2012, 5, 203–218. [Google Scholar] [CrossRef]
- Cooke, J. Developmental mechanism and evolutionary origin of vertebrate left/right asymmetries. Biol. Rev. 2004, 79, 377–407. [Google Scholar] [CrossRef] [PubMed]
- Namigai, E.K.; Kenny, N.J.; Shimeld, S.M. Right across the tree of life: The evolution of left–right asymmetry in the Bilateria. Genesis 2014, 52, 458–470. [Google Scholar] [CrossRef]
- Palmer, A.R. From symmetry to asymmetry: Phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proc. Natl. Acad. Sci. USA 1996, 93, 14279–14286. [Google Scholar] [CrossRef]
- Bravi, R.; Benítez, H.A. Left–right asymmetries and shape analysis on Ceroglossus chilensis (Coleoptera: Carabidae). Acta Oecol. 2013, 52, 57–62. [Google Scholar] [CrossRef]
- Toyota, K.; Izumi, K.; Ichikawa, T.; Ohira, T.; Takeuchi, K. Morphometric approaches reveal sexual differences in the carapace shape of the horsehair crab, Erimacrus isenbeckii (Brandt, 1848). Aquat. Anim. 2020, AA2020, 1–11. [Google Scholar]
- Gonzalez, P.N.; Vallejo-Azar, M.; Aristide, L.; Lopes, R.; Dos Reis, S.F.; Perez, S.I. Endocranial asymmetry in New World monkeys: A comparative phylogenetic analysis of morphometric data. Brain Struct. Funct. 2022, 227, 469–477. [Google Scholar] [CrossRef]
- Harnádková, K.; Kočandrlová, K.; Jaklová, L.K.; Dupej, J.; Velemínská, J. Correction: The effect of sex and age on facial shape directional asymmetry in adults: A 3D landmarks-based method study. PLoS ONE 2024, 19, e0305196. [Google Scholar] [CrossRef]
- Ledoux, J.B.; Tarnowska, K.; Gérard, K.; Lhuillier, E.; Jacquemin, B.; Weydmann, A.; Féral, J.P.; Chenuil, A. Fine-scale spatial genetic structure in the brooding sea urchin Abatus cordatus suggests vulnerability of the Southern Ocean marine invertebrates facing global change. Polar Biol. 2011, 35, 611–623. [Google Scholar] [CrossRef]
- Dongen, S. Fluctuating asymmetry and developmental instability in evolutionary biology: Past, present and future. J. Evol. Biol. 2006, 19, 1727–1743. [Google Scholar] [CrossRef]
- Graham, J.H. Nature, nurture, and noise: Developmental instability, fluctuating asymmetry, and the causes of phenotypic variation. Symmetry 2021, 13, 1204. [Google Scholar] [CrossRef]
- Moya, F.; Schwob, G.; Ugas-Bravo, N.; Delleuze, M.; Gerard, K.; Jacquet, S.; Poulin, E.; Cabrol, L.; Benítez, H.A. Human footprint alters morphological traits and gut microbiome assembly of Antarctic sea urchins. Mar. Pollut. Bull. 2025, 220, 118448. [Google Scholar] [CrossRef] [PubMed]
- Mespoulhe, P. Morphologie D’un Échinide Irrégulier Subantarctique de L’archipel des Kerguelen: Ontogenèse, Dimorphisme Sexuel et Variabilité. Ph.D. Thesis, Université de Bourgogne, Dijon, France, 1992. [Google Scholar]
Species | Wilcoxon | p | p (Permutation) |
---|---|---|---|
Clade | 1697 | <0.001 | <0.0005 |
A. agassizii | 263 | 0.29 | 0.31 |
A. cavernosus (F/M) | 102 | <0.01 | <0.005 |
A. cordatus | 311 | <0.005 | <0.005 |
A. cavernosus (P) | 299 | <0.01 | <0.05 |
Species | Wilcoxon | p | p (Permutation) |
---|---|---|---|
Clade | 739 | 0.243 | 0.27 |
A. agassizii | 73 | 0.223 | 0.105 |
A. cavernosus (F/M) | - | - | - |
A. cordatus | 62 | 0.393 | 0.243 |
A. cavernosus (P) | 62 | 0.37 | 0.34 |
Species | Rho | p | r | p (Permutation) |
---|---|---|---|---|
Clade | −0.072 | 0.51 | −0.098 | 0.409 |
A. agassizii | 0.046 | 0.840 | −0.113 | 0.664 |
A. cavernosus (P) | −0.06 | 0.801 | −0.117 | 0.621 |
A. cordatus | 0.226 | 0.248 | 0.265 | 0.257 |
A. cavernosus (F/M) | −0.382 | 0.327 | −0.311 | 0.375 |
Size range dataset | −0.072 | 0.51 | −0.097 | 0.379 |
Effect | SS | MS | df | F | p | |
---|---|---|---|---|---|---|
Clade | Ind | 0.03015452 | 0.0000146027 | 2065 | 2.99 | <0.0001 |
Side | 0.00460383 | 0.000131538 | 35 | 26.92 | <0.0001 | |
Ind*Side | 0.01214057 | 0.0000048855 | 2485 | 10.59 | <0.0001 | |
Error | 0.00232545 | 0.0000004614 | 5040 | |||
Species | 0.07307232 | 0.000695927 | 105 | 47.66 | <0.0001 | |
Sex | 0.00012825 | 0.0000036644 | 35 | 0.25 | 1 | |
Size | 0.00500451 | 0.0000178732 | 280 | 1.22 | 0.0101 | |
A. agassizii | Ind | 0.01120998 | 0.0000200178 | 560 | 3.07 | <0.0001 |
Side | 0.00069637 | 0.0000198964 | 35 | 3.05 | <0.0001 | |
Ind*Side | 0.00456341 | 0.0000065192 | 700 | 15.38 | <0.0001 | |
Error | 0.00062325 | 0.000000424 | 1470 | |||
Sex | 0.00043284 | 0.0000123668 | 35 | 0.62 | 0.9597 | |
Size | 0.00212148 | 0.0000202045 | 105 | 1.01 | 0.4617 | |
A. cavernosus (P) | Ind | 0.00507296 | 0.000010353 | 490 | 4.96 | <0.0001 |
Side | 0.00273576 | 0.0000781644 | 35 | 37.46 | <0.0001 | |
Ind*Side | 0.0013877 | 0.0000020868 | 665 | 5.04 | <0.0001 | |
Error | 0.00057915 | 0.0000004137 | 1400 | |||
Sex | 0.00029063 | 0.0000083038 | 35 | 0.8 | 0.7853 | |
Size | 0.00091105 | 0.0000065075 | 140 | 0.63 | 0.9994 | |
Population | 0.03793207 | 0.0010837736 | 35 | 103.34 | <0.0001 | |
A. cavernosus (F/M) | Ind | 0.00184649 | 0.0000075367 | 245 | 2.46 | <0.0001 |
Side | 0.00210736 | 0.0000602103 | 35 | 19.64 | <0.0001 | |
Ind*Side | 0.00107307 | 0.0000030659 | 350 | 5.93 | <0.0001 | |
Error | 0.00039803 | 0.0000005169 | 770 | |||
Sex | na | na | na | na | na | |
Size | 0.00258541 | 0.000024623 | 105 | 3.27 | <0.0001 | |
A. cordatus | Ind | 0.00550034 | 0.0000112252 | 490 | 2.14 | <0.0001 |
Side | 0.00237164 | 0.0000677611 | 35 | 12.92 | <0.0001 | |
Ind*Side | 0.0034887 | 0.0000052462 | 665 | 10.07 | <0.0001 | |
Error | 0.00072941 | 0.000000521 | 1400 | |||
Sex | 0.00025461 | 0.0000072744 | 35 | 0.65 | 0.9422 | |
Size | 0.00522161 | 0.0000372972 | 140 | 3.32 | <0.0001 |
Effect | SS | MS | df | F | p | Distance | |
---|---|---|---|---|---|---|---|
Clade | Ind | 0.217697 | 0.0030662 | 71 | 6.298 | 0.7096 | |
Side | 0.009216 | 0.0092157 | 1 | 18.929 | <0.0001 | ||
Ind*Side | 0.034566 | 0.0004868 | 71 | 15.043 | <0.0001 | ||
Error | 0.00466 | 0.0000324 | 144 | ||||
Sex | 0.000489 | 0.00048913 | 1 | 1.1842 | 0.268 | ||
Size | 0.000183 | 0.00018345 | 1 | 0.4442 | 0.681 | ||
Species | 0.006633 | 0.00221095 | 3 | 5.3529 | <0.001 | ||
A. agassizii | Ind | 0.027574 | 0.00137872 | 20 | 2.5439 | 0.8866 | |
Side | 0.001394 | 0.00139405 | 1 | 2.5722 | 0.0979 | 0.00814 | |
Ind*Side | 0.01084 | 0.00054198 | 20 | 18.2423 | <0.0001 | ||
Error | 0.001248 | 0.00002971 | 42 | ||||
Sex | 0.0005157 | 0.00051571 | 1 | 0.9087 | 0.372 | ||
Size | 0.0001087 | 0.0001087 | 1 | 0.1915 | 0.893 | ||
A. cavernosus (P) | Ind | 0.0125584 | 0.000661 | 19 | 3.1591 | 0.9737 | |
Side | 0.0054737 | 0.0054737 | 1 | 26.1615 | <0.0001 | 0.01654 | |
Ind*Side | 0.0039753 | 0.0002092 | 19 | 7.2205 | <0.0001 | ||
Error | 0.0011591 | 0.000029 | 40 | ||||
Sex | 0.0001193 | 0.00011935 | 1 | 0.626 | 0.641 | ||
Size | 0.0006146 | 0.00061458 | 1 | 3.2233 | 0.032 | ||
Population | 0.0002286 | 0.00022865 | 1 | 0.832 | 0.434 | ||
A. cavernosus (F/M) | Ind | 0.0088743 | 0.0008874 | 10 | 2.2198 | 0.9364 | |
Side | 0.004217 | 0.004217 | 1 | 10.5485 | 0.014 | 0.01956 | |
Ind*Side | 0.0039977 | 0.0003998 | 10 | 11.0416 | <0.0001 | ||
Error | 0.0007965 | 0.0000362 | 22 | ||||
Sex | na | na | na | na | na | ||
Size | 0.000093 | 0.00009299 | 1 | 0.2143 | 0.88 | ||
A. cordatus | Ind | 0.021988 | 0.0011572 | 19 | 2.4022 | 0.9437 | |
Side | 0.004746 | 0.0047459 | 1 | 9.8513 | 0.0018 | 0.0154 | |
Ind*Side | 0.009153 | 0.0004817 | 19 | 13.199 | <0.0001 | ||
Error | 0.00146 | 0.0000365 | 40 | ||||
Sex | 0.0001608 | 0.0001608 | 1 | 0.3188 | 0.805 | ||
Size | 0.0004168 | 0.00041682 | 1 | 0.8263 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moya, F.; Saucède, T.; Brickle, P.; Suazo, M.J.; Hernández-Martelo, J.; Poulin, E.; Benítez, H.A. Patterns of Directional and Fluctuating Asymmetry in Southern Ocean Sea Urchins. Symmetry 2025, 17, 1458. https://doi.org/10.3390/sym17091458
Moya F, Saucède T, Brickle P, Suazo MJ, Hernández-Martelo J, Poulin E, Benítez HA. Patterns of Directional and Fluctuating Asymmetry in Southern Ocean Sea Urchins. Symmetry. 2025; 17(9):1458. https://doi.org/10.3390/sym17091458
Chicago/Turabian StyleMoya, Fernando, Thomas Saucède, Paul Brickle, Manuel J. Suazo, Jordan Hernández-Martelo, Elie Poulin, and Hugo A. Benítez. 2025. "Patterns of Directional and Fluctuating Asymmetry in Southern Ocean Sea Urchins" Symmetry 17, no. 9: 1458. https://doi.org/10.3390/sym17091458
APA StyleMoya, F., Saucède, T., Brickle, P., Suazo, M. J., Hernández-Martelo, J., Poulin, E., & Benítez, H. A. (2025). Patterns of Directional and Fluctuating Asymmetry in Southern Ocean Sea Urchins. Symmetry, 17(9), 1458. https://doi.org/10.3390/sym17091458