Connections Between Kuratowski Partitions of Baire Spaces, Measurable Cardinals, and Precipitous Ideals
Abstract
1. Introduction
2. Definitions and Known Facts
- ZFC + existence of a measurable cardinal;
- ZFC + existence of a K-partition of a Baire metric space;
- ZFC + existence of a K-partition of a complete metric space.
- refines ;
- For such that , we have for .
3. Results
3.1. Basic Results About K-Partitions
3.2. K-Partitions, Precipitous Ideals, and Measurable Cardinals
4. Discussion
4.1. Possible Connections with Real-Measurable Cardinals
4.2. Conclusions and Further Developments
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuratowski, K. Quelques problemes concernant les espaces metriques nonseparable. Fund. Math. 1935, 25, 534–545. [Google Scholar] [CrossRef]
- Emeryk, A.; Frankiewicz, R.; Kulpa, W. Remarks on Kuratowski’s Theorem on meager sets. Bull. Acad. Pol. Sci. 1979, 27, 493–498. [Google Scholar]
- Luzin, N. Sur les propriétés des fonctions mesurables. Comptes Rendus L’Académie Sci. Paris 1912, 154, 1688–1690. [Google Scholar]
- Emeryk, A.; Frankiewicz, R.; Kulpa, W. On function having the Baire property. Bull. Acad. Pol. Sci. 1979, 27, 489–491. [Google Scholar]
- Kunugi, K. Sur les fonctions jouissant de la propriete de Baire. Jpn. J. Math. 1936, 13, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Grzegorek, E.; Labuda, I. Partitions into thin sets and forgotten theorems of Kunugi and Luzin-Novikov. Colloq. Math. 2019, 155, 267–285. [Google Scholar] [CrossRef]
- Frankiewicz, R.; Kunen, K. Solution of Kuratowski’s problem on function having the Baire property. Fund. Math. 1987, 128, 171–180. [Google Scholar] [CrossRef]
- Jech, T. Set Theory—3rd Millennium Edition, Revised and Expanded; Springer monographs in mathematics; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Jech, T.; Mitchel, W. Some examples of precipitous ideals. Ann. Pure Appl. Logic 1983, 24, 24–40. [Google Scholar] [CrossRef]
- Morgan, J.C. Baire category from an abstract viewpoint. Fund. Math. 1977, 94, 13–23. [Google Scholar] [CrossRef]
- Aniszczyk, B.; Frankiewicz, R.; Plewik, S. Remarks on (s) and Ramsey-measurable Functions. Bull. Polish Acad. Sci. Math. 1987, 35, 479–485. [Google Scholar]
- Bukovský, L. Any partition into Lebesgue measure zero sets produces a nonmeasurable set. Bull. Polish Acad. Sci. Math. 1979, 27, 431–435. [Google Scholar]
- Fleissner, W.; Kunen, K. Barely Baire spaces. Fund. Math. 1978, 101, 229–240. [Google Scholar] [CrossRef]
- Frankiewicz, R.; Jureczko, J. On the Gitik–Shelah theorem. Georgian Math. J. 2019, 26, 555–559. [Google Scholar] [CrossRef]
- Louveau, A.; Simpson, S.G. A separable image theorem for Ramsey mappings. Bull. Acad. Pol. Sci. 1982, 30, 105–108. [Google Scholar]
- Frankiewicz, R.; Jureczko, J.; Węglorz, B. On Kuratowski partitions in the Marczewski and Laver structures and Ellentuck topology. Georgian Math. J. 2019, 26, 591–598. [Google Scholar] [CrossRef]
- Gitik, M.; Shelah, S. Forcings with ideals and simple forcing notions. Israel J. Math. 1989, 68, 129–160. [Google Scholar] [CrossRef]
- Michalski, M.; Rałowski, R.; Żeberski, S. Nonmeasurable sets and unions with respect to tree ideals. Bull. Symb. Log. 2020, 26, 1–14. [Google Scholar] [CrossRef]
- Banakh, T.; Rałowski, R.; Żeberski, S. The Set-Cover game and non-measurable unions. Ann. Pure Appl. Log. 2025, 176, 103602. [Google Scholar] [CrossRef]
- Kuratowski, K. Topology; Academic Press: New York, NY, USA, 1976; Volume 1. [Google Scholar]
- Ulam, S. Zur Masstheorie in der allgemeinen Mengenlehre. Fund. Math. 1930, 16, 140–150. [Google Scholar] [CrossRef]
- Solovay, R. Real-valued measurable cardinals. Axiomat. Set Theory Proc. Sympos. Pure Math. 1967, 13, 397–428. [Google Scholar]
- Aniszczyk, B.; Frankiewicz, R. Non homeomorphic density topologies. Bull. Pol. Acad. Sci. Math. 1986, 34, 211–213. [Google Scholar]
- Oxtoby, J.C. Measure and Category; Springer: New York, NY, USA, 1971. [Google Scholar]
- Schilling, K. Some category bases which are equivalent to topologies. Real Anal. Exch. 1989, 14, 210–214. [Google Scholar] [CrossRef]
- Kalemba, P.; Plewik, S.; Wojciechowska, A. On the ideal (v0). Cent. Eur. J. Math. 2008, 6, 218–227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusiński, S. Connections Between Kuratowski Partitions of Baire Spaces, Measurable Cardinals, and Precipitous Ideals. Symmetry 2025, 17, 1426. https://doi.org/10.3390/sym17091426
Kusiński S. Connections Between Kuratowski Partitions of Baire Spaces, Measurable Cardinals, and Precipitous Ideals. Symmetry. 2025; 17(9):1426. https://doi.org/10.3390/sym17091426
Chicago/Turabian StyleKusiński, Sławomir. 2025. "Connections Between Kuratowski Partitions of Baire Spaces, Measurable Cardinals, and Precipitous Ideals" Symmetry 17, no. 9: 1426. https://doi.org/10.3390/sym17091426
APA StyleKusiński, S. (2025). Connections Between Kuratowski Partitions of Baire Spaces, Measurable Cardinals, and Precipitous Ideals. Symmetry, 17(9), 1426. https://doi.org/10.3390/sym17091426