Microstructural Evolution and Mechanical Properties of an Additively Manufactured AlSi10Mg Alloy Post-Processed by Twist Equal Channel Angular Pressing
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and PBF-LB/M Fabrication
2.2. Twist Channel Angular Pressing (TCAP)
2.3. Microstructural Characterization
2.4. Mechanical Properties
3. Results
3.1. Microstructure in As-Built Condition
3.2. Effect of Twist Channel Angular Pressing (TCAP) on the Microstructure
- Deformed Melt Pool Structures: The lighter, lenticular (lens-shaped) regions represent the interiors of the original melt pools, which have been plastically deformed. It is critical to note that these are not individual grains; rather, each elongated “fish-scale” structure is a multi-grained region that has been subjected to intense shear. The interiors of these structures consist of the α-Al matrix and the Si network.
- Melt Pool Boundaries: A dark, continuous, and interconnecting network delineates the deformed melt pool structures. These correspond to the original melt pool boundaries from the SLM process. Their preferential response to chemical etching, which results in the dark contrast, is attributed to the segregation of the Si-rich eutectic phase that occurs at these interfaces during the rapid solidification inherent to the additive manufacturing process. After the first ECAP pass, these boundaries are stretched, thinned, and reoriented to trace the material’s flow lines. By forming a continuous network that encapsulates the deformed melt pools.
3.3. Effect of Twist Equal Channel Angular Pressing on the Mechanical Properties of PBF-LB/M AlSi10Mg Alloy
4. Conclusions
- The as-built PBF-LB/M alloy possessed a unique hierarchical microstructure, with its high initial yield strength (450 MPa) attributed to a fine cellular network. High-resolution EBSD confirmed that this network consisted of low-angle subgrain boundaries containing a high density of geometrically necessary dislocations.
- Two passes of TCAP via Route Bc produced a heterogeneous microstructure with a bimodal grain size distribution. The refined structure existed in a non-equilibrium state, characterized by a high fraction of low-angle grain boundaries (63%) and significant internal lattice distortion.
- The mechanical response was dictated by the processing temperature. A single TWIST ECAP pass at 150 °C induced work hardening, increasing the yield strength to 482 MPa. The second pass at an elevated temperature of 250 °C promoted dynamic recovery, which, despite further grain refinement, led to a decrease in yield strength to 422 MPa but an increase in ultimate compressive strength to 731 MPa.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Rubaie, K.S.; Melotti, S.; Rabelo, A.; Paiva, J.M.; Elbestawi, M.A.; Veldhuis, S.C. Machinability of SLM-Produced Ti6Al4V Titanium Alloy Parts. J. Manuf. Process 2020, 57, 768–786. [Google Scholar] [CrossRef]
- Huang, N.; Luo, Q.; Bartles, D.; Simpson, T.; Beese, A. Effect of heat treatment on microstructure and mechanical properties of AlSi10Mg fabricated using laser powder bed fusion. Mater. Sci. Eng. A 2024, 895, 146228. [Google Scholar] [CrossRef]
- Chen, J.; Chen, B. Progress in Additive Manufacturing of Magnesium Alloys: A Review. Materials 2024, 17, 3851. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, G.; Xiao, Z.; Zhang, Y.; Zhou, Y.; Liu, X.; Li, W.; Xu, J. Microstructures and Mechanical Properties of Pure Copper Manufactured by High-Strength Laser Powder Bed Fusion. Opt. Laser Technol. 2025, 182, 112134. [Google Scholar] [CrossRef]
- Jiang, R.; Yang, Y.; Wang, H.; Liu, Z.; Liu, L.; Du, J.; Tang, T.; Ye, Z.; Li, Q.; Yan, X.; et al. Effects of Remelting Scan Strategy on the Overlapping Quality of 316L Stainless Steel Fabricated by Multi-Laser Powder Bed Fusion. Mater. Sci. Eng. A 2025, 923, 147725. [Google Scholar] [CrossRef]
- Xiong, Z.H.; Liu, S.L.; Li, S.F.; Shi, Y.; Yang, Y.F.; Misra, R.D.K. Role of Melt Pool Boundary Condition in Determining the Mechanical Properties of Selective Laser Melting AlSi10Mg Alloy. Mater. Sci. Eng. A 2019, 740–741, 148–156. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Tan, Z.; Xiong, D.B.; Guo, Q. Stress Relaxation and the Cellular Structure-Dependence of Plastic Deformation in Additively Manufactured AlSi10Mg Alloys. Int. J. Plast. 2020, 127, 102640. [Google Scholar] [CrossRef]
- Wang, P.; Rabori, A.S.; Dong, Q.; Ravkov, L.; Balogh, L.; Fallah, V. The Role of Cellular Structure, Non-Equilibrium Eutectic Phases and Precipitates on Quasi-Static Strengthening Mechanisms of as-Built AlSi10Mg Parts 3D Printed via Laser Powder Bed Fusion. Mater. Charact. 2023, 198, 112730. [Google Scholar] [CrossRef]
- Jokelainen, T.; Iso-Junno, T.; Järvenpää, A.; Mustakangas, A.; Keskitalo, M.; Mäntyjärvi, K. Formability of Selective Laser Melted AlSi10Mg. AIP Conf. Proc. 2019, 2113, 150011. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhou, X.; Shen, Z.; Liu, W. Microstructure of Selective Laser Melted AlSi10Mg Alloy. Mater. Des. 2019, 168, 107677. [Google Scholar] [CrossRef]
- Di Egidio, G.; Ceschini, L.; Morri, A.; Martini, C.; Merlin, M. A Novel T6 Rapid Heat Treatment for AlSi10Mg Alloy Produced by Laser-Based Powder Bed Fusion: Comparison with T5 and Conventional T6 Heat Treatments. Metall. Mater. Trans. B 2022, 53, 284–303. [Google Scholar] [CrossRef]
- Chen, S.Q.; Huang, X.Y.; Shuai, L.F.; Wu, G.L.; Huang, T.L.; Huang, X.X. Annealing Behavior of AlSi10Mg Alloy Fabricated by Laser Powder Bed Fusion. J. Phys. Conf. Ser. 2023, 2635, 012036. [Google Scholar] [CrossRef]
- Yaru, L.; Tiejun, M.; Tounan, J.; Bo, Z.; Le, Y.; Wenhang, Y.; Hanguang, F. Aging Temperature Effects on Microstructure and Mechanical Properties for Additively Manufactured AlSi10Mg. Mater. Sci. Technol. 2023, 39, 1223–1236. [Google Scholar] [CrossRef]
- Vishnu, V.; Prabhu, T.R.; Vineesh, K.P. Effect of Hard Anodizing and T6 Heat Treatment on the Dry Sliding Wear Behavior of AlSi10Mg Fabricated by Direct Metal Laser Sintering. Wear 2025, 564–565, 205677. [Google Scholar] [CrossRef]
- Lehner, P.; Blinn, B.; Zhu, T.; Al-Zuhairi, A.; Smaga, M.; Teutsch, R.; Beck, T. Influence of the As-Built Surface and a T6 Heat Treatment on the Fatigue Behavior of Additively Manufactured AlSi10Mg. Int. J. Fatigue 2024, 187, 108479. [Google Scholar] [CrossRef]
- Rubben, T.; Revilla, R.I.; De Graeve, I. Effect of Heat Treatments on the Anodizing Behavior of Additive Manufactured AlSi10Mg. J. Electrochem. Soc. 2019, 166, C42–C48. [Google Scholar] [CrossRef]
- Takata, N.; Kodaira, H.; Sekizawa, K.; Suzuki, A.; Kobashi, M. Change in Microstructure of Selectively Laser Melted AlSi10Mg Alloy with Heat Treatments. Mater. Sci. Eng. A 2017, 704, 218–228. [Google Scholar] [CrossRef]
- Casati, R.; Nasab, M.H.; Coduri, M.; Tirelli, V.; Vedani, M. Effects of Platform Pre-Heating and Thermal-Treatment Strategies on Properties of Alsi10mg Alloy Processed by Selective Laser Melting. Metals 2018, 8, 954. [Google Scholar] [CrossRef]
- Heilgeist, S.; Heine, B.; Merkel, M.; Hitzler, L.; Javanbakht, Z.; Öchsner, A. The Influence of Post-Heat Treatments on the Tensile Strength and Surface Hardness of Selectively Laser-Melted AlSi10Mg. Materwiss Werksttech 2019, 50, 546–552. [Google Scholar] [CrossRef]
- Zhou, L.; Mehta, A.; Schulz, E.; McWilliams, B.; Cho, K.; Sohn, Y. Microstructure, Precipitates and Hardness of Selectively Laser Melted AlSi10Mg Alloy before and after Heat Treatment. Mater. Charact. 2018, 143, 5–17. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Wang, Z.; Li, D.; Cui, X.; Xu, J. Effect of Cooling Rates and Heat Treatment Time on Si Phase of AlSi10Mg Alloy Manufactured by Selective Laser Melting: Microstructure Evolution and Strengthening Mechanism. J. Alloys Compd. 2024, 1007, 176494. [Google Scholar] [CrossRef]
- Alghamdi, F.; Song, X.; Hadadzadeh, A.; Shalchi-Amirkhiz, B.; Mohammadi, M.; Haghshenas, M. Post Heat Treatment of Additive Manufactured AlSi10Mg: On Silicon Morphology, Texture and Small-Scale Properties. Mater. Sci. Eng. A 2020, 783, 139296. [Google Scholar] [CrossRef]
- Langdon, T.G. Twenty-Five Years of Ultrafine-Grained Materials: Achieving Exceptional Properties through Grain Refinement. Acta Mater. 2013, 61, 7035–7059. [Google Scholar] [CrossRef]
- Beytüt, H.; Özbeyaz, K.; Temiz, Ş. A Novel Hybrid Die Design for Enhanced Grain Refinement: Vortex Extrusion–Equal-Channel Angular Pressing (Vo-CAP). Appl. Sci. 2025, 15, 359. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Langdon, T.G. The Fundamentals of Nanostructured Materials Processed by Severe Plastic Deformation. JOM 2004, 56, 58–63. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Langdon, T.G. Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Snopińśki, P.; Tański, T.; Matus, K.; Rusz, S. Microstructure, Grain Refinement and Hardness of Al–3%Mg Aluminium Alloy Processed by ECAP with Helical Die. Arch. Civ. Mech. Eng. 2019, 19, 287–296. [Google Scholar] [CrossRef]
- Beygelzimer, Y.; Prilepo, D.; Kulagin, R.; Grishaev, V.; Abramova, O.; Varyukhin, V.; Kulakov, M. Planar Twist Extrusion versus Twist Extrusion. J. Mater. Process. Technol. 2011, 211, 522–529. [Google Scholar] [CrossRef]
- Hilšer, O.; Rusz, S.; Maziarz, W.; Dutkiewicz, J.; Tański, T.; Snopiński, P.; Džugan, J. Structure and Properties of AZ31 Magnesium Alloy after Combination of Hot Extrusion and ECAP. Acta Metall. Slovaca 2017, 23, 222–228. [Google Scholar] [CrossRef]
- Masouleh, M.K.; Mirzakhani, A.; Abdian, M.; Assempour, A. Effects of Temperature and Pass Number on Mechanical Properties, Microstructure, and Texture Evolution in Pure Magnesium Processed via a Geometrically Optimized TCAP Method. Results Eng. 2025, 27, 106138. [Google Scholar] [CrossRef]
- Bednarczyk, I.; Dobkowska, A.; Hilšer, O.; Rusz, S.; Pastrňák, M.; Čada, R.; Jabłońska, M.; Tkocz, M.; Kowalczyk, K.; Palgan, D.; et al. Influence of Temperature and Number of Passes during Twist Channel Angular Pressing (TCAP) on the Microstructural, Mechanical, and Corrosion Properties of Mg–4Li–Ca. Arch. Civ. Mech. Eng. 2024, 24, 89. [Google Scholar] [CrossRef]
- Macháčková, A. Decade of Twist Channel Angular Pressing: A Review. Materials 2020, 13, 1725. [Google Scholar] [CrossRef] [PubMed]
- Hilser, O.; Pastrnak, M.; Rusz, S.; Hana Krupova, P.S. Finite element analysis of twist channel angular pressing. MM Sci. J. 2023, 6314–6318. [Google Scholar] [CrossRef]
- Chen, B.; Moon, S.K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K. Strength and Strain Hardening of a Selective Laser Melted AlSi10Mg Alloy. Scr. Mater. 2017, 141, 45–49. [Google Scholar] [CrossRef]
- Zhang, X.X.; Andrä, H.; Harjo, S.; Gong, W.; Kawasaki, T.; Lutz, A.; Lahres, M. Quantifying Internal Strains, Stresses, and Dislocation Density in Additively Manufactured AlSi10Mg during Loading-Unloading-Reloading Deformation. Mater. Des. 2021, 198, 109339. [Google Scholar] [CrossRef]
- Paul, H.; Driver, J.H.; Tarasek, A.; Wajda, W.; Miszczyk, M.M. Mechanism of Macroscopic Shear Band Formation in Plane Strain Compressed Fine-Grained Aluminium. Mater. Sci. Eng. A 2015, 642, 167–180. [Google Scholar] [CrossRef]
- Atefi, S.; Parsa, M.H.; Ahmadkhaniha, D.; Zanella, C.; Jafarian, H.R. A Study on Microstructure Development and Mechanical Properties of Pure Copper Subjected to Severe Plastic Deformation by the ECAP-Conform Process. J. Mater. Res. Technol. 2022, 21, 1614–1629. [Google Scholar] [CrossRef]
- Gholizadeh, R.; Terada, D.; Shibata, A.; Tsuji, N. Strain-Dependence of Deformation Microstructures in Ultra-Low-C IF Steel Deformed to High Strains by Torsion at Elevated Temperatures. Nano Mater. Sci. 2020, 2, 83–95. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Q.; Wang, S. Dislocation Structure Evolution Pathway in Surface and Bulk Regions of Ni Deformed in Tension: A Comparison. Philos. Mag. 2025, 200, 1–17. [Google Scholar] [CrossRef]
- Jodi, D.E.; Kitashima, T.; Singh, A.; Watanabe, M. High-Temperature Microstructural Stability of Pure Ni Fabricated by Laser Powder Bed Fusion Using Gaussian and Flat-Top Beam Profiles. Mater. Charact. 2023, 200, 112897. [Google Scholar] [CrossRef]
- Snopiński, P.; Hilšer, O.; Hajnyš, J. Tuning the Defects Density in Additively Manufactured Fcc Aluminium Alloy via Modifying the Cellular Structure and Post-Processing Deformation. Mater. Sci. Eng. A 2023, 865, 144605. [Google Scholar] [CrossRef]
- Karthik, G.M.; Kim, E.S.; Zargaran, A.; Sathiyamoorthi, P.; Jeong, S.G.; Kim, H.S. Role of Cellular Structure on Deformation Twinning and Hetero-Deformation Induced Strengthening of Laser Powder-Bed Fusion Processed CuSn Alloy. Addit. Manuf. 2022, 54, 102744. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Amirkhiz, B.S.; Li, J.; Odeshi, A.; Mohammadi, M. Deformation Mechanism during Dynamic Loading of an Additively Manufactured AlSi10Mg_200C. Mater. Sci. Eng. A 2018, 722, 263–268. [Google Scholar] [CrossRef]
- Roth, C.C.; Tancogne-Dejean, T.; Mohr, D. Plasticity and Fracture of Cast and SLM AlSi10Mg: High-Throughput Testing and Modeling. Addit. Manuf. 2021, 43, 101998. [Google Scholar] [CrossRef]
- Snopiński, P. Exploring Microstructure Refinement and Deformation Mechanisms in Severely Deformed LPBF AlSi10Mg Alloy. J. Alloys Compd. 2023, 941, 168984. [Google Scholar] [CrossRef]
- Li, N.; Qiao, S.; Gao, X.; Wang, F.; Wen, X.; Xia, Z.; Wang, Y.; Liu, S.; Jiang, J.; Yuan, C.; et al. Unraveling Dynamic Recrystallization Mechanisms in Ni-Based Wrought Superalloy GH4698 through Comprehensive EBSD Analysis. Mater. Lett. 2025, 378, 137613. [Google Scholar] [CrossRef]
- Yang, Q.; Wojcik, T.; Kozeschnik, E. Continuous Dynamic Recrystallization and Deformation Behavior of an AA1050 Aluminum Alloy during High-Temperature Compression. Metals 2024, 14, 889. [Google Scholar] [CrossRef]
- Lejček, P.; Školáková, A.; Molnárová, O.; Habr, S.; Čapek, J.; Čepová, M.; Málek, P. Development of Microstructure in Aluminum Single Crystal During Complex Shearing of Extruded Tube. Metall. Mater. Trans. A 2024, 55, 3407–3421. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Baxter, C.; Amirkhiz, B.S.; Mohammadi, M. Strengthening Mechanisms in Direct Metal Laser Sintered AlSi10Mg: Comparison between Virgin and Recycled Powders. Addit. Manuf. 2018, 23, 108–120. [Google Scholar] [CrossRef]
- Snopiński, P.; Matus, K.; Tatiček, F.; Rusz, S. Overcoming the Strength-Ductility Trade-off in Additively Manufactured AlSi10Mg Alloy by ECAP Processing. J. Alloys Compd. 2022, 918, 165817. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Y.; Huang, Q.; Liu, H.; Zhang, Z. The Dynamic Recrystallization Microstructure Characteristics and the Effects on Static Recrystallization and Mechanical Properties of Al–Mg–Si Alloy. Mater. Sci. Eng. A 2024, 899, 146454. [Google Scholar] [CrossRef]
- Wei, D.; Han, L.; Lv, Z.; Wang, G.; Zhao, G. Investigation of Constitutive Models and Microstructure Evolution during Hot Deformation and Solution Treatment of Al–Zn–Mg–Cu Alloy. J. Mater. Res. Technol. 2024, 32, 1028–1045. [Google Scholar] [CrossRef]
- Yasnikov, I.S.; Kaneko, Y.; Uchida, M.; Vinogradov, A. The Grain Size Effect on Strain Hardening and Necking Instability Revisited from the Dislocation Density Evolution Approach. Mater. Sci. Eng. A 2022, 831, 142330. [Google Scholar] [CrossRef]
- Kubin, L.; Devincre, B.; Hoc, T. Modeling Dislocation Storage Rates and Mean Free Paths in Face-Centered Cubic Crystals. Acta Mater. 2008, 56, 6040–6049. [Google Scholar] [CrossRef]
- Wang, Z.; Tao, S.; Jian, T.; Jiang, B. Grain Boundary-Induced Stress Localization during Compression Deformation of Polycrystalline 316L Stainless Steel. Appl. Phys. A 2024, 130, 870. [Google Scholar] [CrossRef]
- Bouaziz, O.; Estrin, Y.; Bréchet, Y.; Embury, J.D. Critical Grain Size for Dislocation Storage and Consequences for Strain Hardening of Nanocrystalline Materials. Scr. Mater. 2010, 63, 477–479. [Google Scholar] [CrossRef]
- Záležák, T.; Gadelmeier, C.; Gamanov, S.; Glatzel, U.; Inui, H.; George, E.; Dlouhý, A. Creep strength variations related to grain boundaries in the equiatomic CoCrFeMnNi high-entropy alloy. Scr. Mater. 2024, 249, 116165. [Google Scholar] [CrossRef]
Si | Mg | Fe | Mn | Cu | Zn | Ti | Al |
---|---|---|---|---|---|---|---|
9.0–11.0 | 0.25–0.45 | 0.55 | 0.45 | 0.05 | 0.10 | 0.15 | Bal. |
LAGBs, % | HAGBs, % | KAM, [º] | Grain Size, [μm] | |
---|---|---|---|---|
As-built | 24 | 76 | 0.48 | 10.8 ± 6.1 |
2 ECAP | 63 | 37 | 1.2 | 8.9 |
Sample Condition | Yield Strength (YS) [MPa] | Ultimate Compressive Strength (UCS) [MPa] | Strain Hardening Exponent (n) |
---|---|---|---|
As-built | 450 ± 6 | 665 ± 5 | 0.25 ± 0.01 |
1 twist ECAP Pass (150 °C) | 482 ± 7 | 670 ± 3 | 0.27 ± 0.01 |
2 twist ECAP Passes (250 °C) | 422 ± 4 | 731 ± 5 | 0.25 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snopiński, P.; Appiah, A.; Hilšer, O.; Hajnyš, J. Microstructural Evolution and Mechanical Properties of an Additively Manufactured AlSi10Mg Alloy Post-Processed by Twist Equal Channel Angular Pressing. Symmetry 2025, 17, 1289. https://doi.org/10.3390/sym17081289
Snopiński P, Appiah A, Hilšer O, Hajnyš J. Microstructural Evolution and Mechanical Properties of an Additively Manufactured AlSi10Mg Alloy Post-Processed by Twist Equal Channel Angular Pressing. Symmetry. 2025; 17(8):1289. https://doi.org/10.3390/sym17081289
Chicago/Turabian StyleSnopiński, Przemysław, Augustine Appiah, Ondřej Hilšer, and Jiři Hajnyš. 2025. "Microstructural Evolution and Mechanical Properties of an Additively Manufactured AlSi10Mg Alloy Post-Processed by Twist Equal Channel Angular Pressing" Symmetry 17, no. 8: 1289. https://doi.org/10.3390/sym17081289
APA StyleSnopiński, P., Appiah, A., Hilšer, O., & Hajnyš, J. (2025). Microstructural Evolution and Mechanical Properties of an Additively Manufactured AlSi10Mg Alloy Post-Processed by Twist Equal Channel Angular Pressing. Symmetry, 17(8), 1289. https://doi.org/10.3390/sym17081289