Computer Simulation Everywhere: Mapping Fifteen Years Evolutionary Expansion of Discrete-Event Simulation and Integration with Digital Twin and Generative Artificial Intelligence
Abstract
1. Introduction
- RO1. Assess the evolutionary expansion of DES research.
- RO2. Analyze the research landscape to uncover the thematic structure, applications, and evolution.
- RO3. Evaluate the intellectual structure to highlight the impacts of documents and sources’ citations and impact.
- RO4. Analyze the social structures of DES research and identify authors’ and countries’ collaborations.
- RO5. Examine the recent developments involving DES integration with digital twin (DT) and AI/GenAI technologies.
2. Background and Overview of Discrete-Event Simulation and Modeling Processes
2.1. Overview of Discrete-Event Simulation
2.2. Modeling Activities, Tasks, and Processes
2.3. Limitations of Simulation
3. Materials and Methods
3.1. Bibliometric Analysis
3.2. Data Collection
3.3. Data Analytics Tools and Techniques
4. Results
4.1. Sample Description and Preliminary Results
4.2. Scientific Literature Production Trend on DES
4.3. Domains of Discrete-Event Simulation Research and Practice
4.4. Thematic Structure of DES Research and Evolution
- Prominent themes, defined by prominent keywords with a frequency (f) of 10 or more, (f ≥ 10);
- Emerging themes, having keyword frequencies between 4 and 9 (4 ≤ f < 10);
- Least frequent themes (f < 4) and evolutionary trends during the period (2010–2024).
4.4.1. Prominent Themes
4.4.2. Emerging Themes
4.4.3. Least Frequent Themes and Trends
- Pre-2014: (“testing,” “data integration,” “queuing model,” “healthcare modeling,” “bed management,” “breast cancer,” and more).
- 2014–2016: (“formal verification,” “work sampling,” “diagnoses,” “car sharing,” and more).
- 2016–2018: (“layout design,” “artificial intelligence,” “automation,” “object-oriented modeling,” and more).
- 2018–2020: (“core manufacturing simulation,” “manufacturing planning,” “fast-moving consumer goods,” “traffic congestion,” and more).
- 2020–2022: (“supply chain planning,” “capacity analysis,” “virtual reality,” “crowd management,” “underground mining,” “artificial neural network”).
- 2022–2024: (“mass vaccination,” “capacity analysis,” “load sharing,” “ambulance deployment,” and more).
- post-2024: (“management science,” “sales operations planning,” “decomposition,” “artificial intelligence,” “additive manufacturing,” “collaborative networks,” and more).
4.5. Intellectual Structure of DES Research
4.5.1. Most Cited Documents
4.5.2. Eminent Sources
4.6. Social Structure of Publications
Countries’ Publications and Impact
4.7. DES Integration with Digital Twin in Industry 4.0 and Artificial Intelligence
4.7.1. The Role of DES in Enhancing Digital Twin in Industry 4.0
4.7.2. DES Integration with Artificial Intelligence/Generative Artificial Intelligence
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harling, J. Simulation techniques in operations research—A review. Oper. Res. 1958, 6, 307–319. [Google Scholar] [CrossRef]
- Powers, M.J.; Sanchez, S.M.; Lucas, T.W. The exponential expansion of simulation in research. In Proceedings of the 2012 Winter Simulation Conference (WSC), Berlin, Germany, 9–12 December 2012; IEEE: New York, NY, USA, 2012; pp. 1–12. [Google Scholar]
- Pidd, M. Computer Simulation in Management Science, 5th ed.; Wiley: Chichester, West Sussex, UK, 2004; ISBN 0-470-09230-0. [Google Scholar]
- Fu, M.C. Optimization via simulation: A review. Ann. Oper. Res. 1994, 53, 199–247. [Google Scholar] [CrossRef]
- Brooks, R.J.; Robinson, S.L. Simulation and Inventory Control: Texts in Operational Research; Palgrave Macmillan: Basingstoke, UK, 2001. [Google Scholar]
- Akpan, I.J.; Shanker, M.; Razavi, R. Improving the success of simulation projects using 3D visualization and virtual reality. J. Oper. Res. Soc. 2020, 71, 1900–1926. [Google Scholar] [CrossRef]
- Akpan, I.J.; Brooks, R.J. Users’ perceptions of the relative costs and benefits of 2D and 3D visual displays in discrete-event simulation. Simulation 2012, 88, 464–480. [Google Scholar] [CrossRef]
- Jahangirian, M.; Taylor, S.J.; Young, T.; Robinson, S. Key performance indicators for successful simulation projects. J. Oper. Res. Soc. 2017, 68, 747–765. [Google Scholar] [CrossRef]
- Pathiraja, S.; Westra, S.; Sharma, A. Why continuous simulation? The role of antecedent moisture in design flood estimation. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Özgün, O.; Barlas, Y. Discrete vs. continuous simulation: When does it matter. In Proceedings of the 27th International Conference of The System Dynamics Society, Albuquerque, NM, USA, 26 July 2009; Volume 6, pp. 1–22. [Google Scholar]
- Goldsman, D.; Goldsman, P. Discrete-Event Simulation. In Modeling and Simulation in the Systems Engineering Life Cycle; Loper, M., Ed.; Simulation Foundations, Methods and Applications; Springer: London, UK, 2015. [Google Scholar] [CrossRef]
- Akpan, I.J.; Brooks, R.J. Experimental evaluation of user performance on two-dimensional and three-dimensional perspective displays in discrete event simulation. Decis. Support Syst. 2014, 64, 14–30. [Google Scholar] [CrossRef]
- Hoad, K.; Monks, T.; O’brien, F. The use of search experimentation in discrete-event simulation practice. J. Oper. Res. Soc. 2015, 66, 1155–1168. [Google Scholar] [CrossRef]
- Baril, C.; Gascon, V.; Vadeboncoeur, D. Discrete-event simulation and design of experiments to study ambulatory patient waiting time in an emergency department. J. Oper. Res. Soc. 2019, 70, 2019–2038. [Google Scholar] [CrossRef]
- Taylor, S.J.; Eldabi, T.; Riley, G.; Paul, R.J.; Pidd, M. Simulation modelling is 50! Do we need a reality check? J. Oper. Res. Soc. 2009, 60, S69–S82. [Google Scholar] [CrossRef]
- Taylor, S.J.; Robinson, S. So where to next? A survey of the future for discrete-event simulation. J. Simul. 2006, 1, 1–6. [Google Scholar] [CrossRef]
- Siebers, P.O.; Macal, C.M.; Garnett, J.; Buxton, D.; Pidd, M. Discrete-event simulation is dead, long live agent-based simulation! J. Simul. 2010, 4, 204–210. [Google Scholar] [CrossRef]
- Heath, S.K.; Brailsford, S.C.; Buss, A.; Macal, C.M. Cross-paradigm simulation modeling: Challenges and successes. In Proceedings of the 2011 Winter Simulation Conference, Phoenix, AZ, USA, 11–14 December 2011; Jain, S., Creasey, R.R., Himmelspach, J., White, K.P., Fu, M., Eds.; IEEE: New York, NY, USA, 2011; pp. 2783–2797. [Google Scholar]
- Brailsford, S. Discrete-event simulation is alive and kicking! J. Simul. 2014, 8, 1–8. [Google Scholar] [CrossRef]
- Brailsford, S.; Schmidt, B. Towards incorporating human behaviour in models of health care systems: An approach using discrete event simulation. Eur. J. Oper. Res. 2003, 150, 19–31. [Google Scholar] [CrossRef]
- Fakhimi, M.; Anagnostou, A.; Stergioulas, L.; Taylor, S.J. A hybrid agent-based and discrete-event simulation approach for sustainable strategic planning and simulation analytics. In Proceedings of the Winter Simulation Conference, Savannah, GA, USA, 7–10 December 2014; IEEE: New York, NY, USA, 2014; pp. 1573–1584. [Google Scholar]
- Brailsford, S.C.; Desai, S.M.; Viana, J. Towards the holy grail: Combining system dynamics and discrete-event simulation in healthcare. In Proceedings of the 2010 Winter Simulation Conference, Baltimore, MD, USA, 5–8 December 2010; IEEE: New York, NY, USA, 2010; pp. 2293–2303. [Google Scholar] [CrossRef]
- Viana, J.; Brailsford, S.C.; Harindra, V.; Harper, P.R. Combining discrete-event simulation and system dynamics in a healthcare setting: A composite model for Chlamydia infection. Eur. J. Oper. Res. 2014, 237, 196–206. [Google Scholar] [CrossRef]
- Page, E.H. WSC turns 50: Simulation everywhere! In Proceedings of the Winter Simulation Conference, Red Rock Resort, LV, USA, 3–6 December 2017. [CrossRef]
- Akpan, I.J.; Shanker, M.; Offodile, O.F. Discrete-event simulation is still alive and strong: Evidence from bibliometric performance evaluation of research during COVID-19 global health pandemic. Int. Trans. Oper. Res. 2024, 31, 2069–2092. [Google Scholar] [CrossRef]
- Currie, C.S.; Fowler, J.W.; Kotiadis, K.; Monks, T.; Onggo, B.S.; Robertson, D.A.; Tako, A.A. How simulation modelling can help reduce the impact of COVID-19. J. Simul. 2020, 14, 83–97. [Google Scholar] [CrossRef]
- Sala, F.; D’Urso, G.; Giardini, C. Discrete-event simulation study of a COVID-19 mass vaccination centre. Int. J. Med. Inform. 2023, 170, 104940. [Google Scholar] [CrossRef]
- Zeigler, B.P.; Mittal, S.; Traore, M.K. MBSE with/out Simulation: State of the Art and Way Forward. Systems 2018, 6, 40. [Google Scholar] [CrossRef]
- Hollocks, B.W. Discrete-event simulation: An inquiry into user practice. Simul. Pract. Theory 2001, 8, 451–471. [Google Scholar] [CrossRef]
- Brooks, R.J.; Wang, W. Conceptual Modelling and the Project Process in Real Simulation Projects: A Survey of Simulation Modellers. J. Oper. Res. Soc. 2015, 66, 1669–1685. [Google Scholar] [CrossRef]
- Akpan, I.J.; Shanker, M. A comparative evaluation of the effectiveness of virtual reality, 3D visualization and 2D visual interactive simulation: An exploratory meta-analysis. Simulation 2019, 95, 145–170. [Google Scholar] [CrossRef]
- Lu, M. Simplified discrete-event simulation approach for construction simulation. J. Constr. Eng. Manag. 2003, 129, 537–546. [Google Scholar] [CrossRef]
- Pereira, T.F.; Montevechi, J.A.B.; Miranda, R.D.C.; Friend, J.D. Integrating soft systems methodology to aid simulation conceptual modeling. Int. Trans. Oper. Res. 2015, 22, 265–285. [Google Scholar] [CrossRef]
- Robinson, S.; Brooks, R.; Kotiadis, K.; Van Der Zee, D.J. Conceptual Modeling for Discrete-Event Simulation. Interfaces 2011, 41, 601–603. [Google Scholar]
- Robinson, S.; Lee, E.P.; Edwards, J.S. Simulation based knowledge elicitation: Effect of visual representation and model parameters. Expert Syst. Appl. 2012, 39, 8479–8489. [Google Scholar] [CrossRef]
- Waller, A.P.; Ladbrook, J. Virtual worlds: Experiencing virtual factories of the future. In Proceedings of the 34th Winter Simulation Conference: Exploring New Frontiers, San Diego, CA, USA, 8 December 2002; IEEE: New York, NY, USA, 2002; pp. 513–517. [Google Scholar]
- Akpan, J.I.; Brooks, R.J. Practitioners’ perception of the impacts of virtual reality on discrete-event simulation. In Proceedings of the 2005 Winter Simulation Conference, Orlando, FL, USA, 4 December 2005; IEEE: Piscataway, NJ, USA, 2005; p. 9. [Google Scholar]
- Balci, O. Validation, verification, and testing techniques throughout the life cycle of a simulation study. Ann. Oper. Res. 1994, 53, 121–173. [Google Scholar] [CrossRef]
- Kamat, V.R.; Martinez, J.C. Validating complex construction simulation models using 3D visualization. Syst. Anal. Model. Simul. 2003, 43, 455–467. [Google Scholar] [CrossRef]
- Martinez, J.C. Methodology for conducting discrete-event simulation studies in construction engineering and management. J. Constr. Eng. Manag. 2010, 136, 3–16. [Google Scholar] [CrossRef]
- Akpan, J.I.; Brooks, R.J. Experimental investigation of the impacts of virtual reality on discrete-event simulation. In Proceedings of the Winter Simulation Conference, Orlando, FL, USA, 4 December 2005; IEEE: New York, NY, USA, 2005; p. 8. [Google Scholar]
- Jain, H.K.; Ramamurthy, K.; Sundaram, S. Effectiveness of visual interactive modeling in the context of multiple-criteria Group decisions. Syst. Man Cybern. Part A 2006, 36, 298–318. [Google Scholar] [CrossRef]
- Wan, H.; Ankenman, B.E.; Nelson, B.L. Controlled Sequential Bifurcation: A New Factor-Screening Method for Discrete-Event Simulation. Oper. Res. 2006, 54, 743–755. [Google Scholar] [CrossRef]
- Seymour, N.E. VR to OR: A review of the evidence that virtual reality simulation improves operating room performance. World J. Surg. 2018, 32, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Van Leeuwen, T. Descriptive versus evaluative bibliometrics. In Handbook of Quantitative Science and Technology Research; Springer: Dordrecht, The Netherlands, 2004; pp. 373–388. [Google Scholar]
- Yu, D.; Xu, Z.; Pedrycz, W.; Wang, W. Information Sciences 1968–2016: A retrospective analysis with text mining and bibliometric. Inf. Sci. 2017, 418, 619–634. [Google Scholar] [CrossRef]
- Yan, E.; Ding, Y. Scholarly network similarities: How bibliographic coupling networks, citation networks, co-citation networks, topical networks, co-authorship networks, and co-word networks relate to each other. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1313–1326. [Google Scholar] [CrossRef]
- Kobara, Y.M.; Akpan, I.J. Bibliometric performance and future relevance of virtual manufacturing technology in the fourth industrial revolution. Systems 2023, 11, 524. [Google Scholar] [CrossRef]
- Jacso, P. As we may search—Comparison of major features of the Web of Science, Scopus, and Google Scholar citation-based and citation-enhanced databases. Curr. Sci. 2005, 89, 1537–1547. [Google Scholar]
- de Moya-Anegón, F.; Chinchilla-Rodríguez, Z.; Vargas-Quesada, B.; Corera-Álvarez, E.; José Muñoz-Fernández, F.; González-Molina, A.; Herrero-Solana, V. Coverage analysis of Scopus: A journal metric approach. Scientometrics 2007, 73, 53–78. [Google Scholar] [CrossRef]
- Kobara, Y.M.; Akpan, J.I.; Nam, A.D.; AlMukhthar, F.H.; Peter, M. Artificial Intelligence and Data Science Methods for Automatic Detection of White Blood Cells in Images. J. Imaging Inform. Med. 2025. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L.; Dekker, R.; van den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Singh, J.; Gupta, V. A systematic review of text stemming techniques. Artif. Intell. Rev. 2017, 48, 157–217. [Google Scholar] [CrossRef]
- Tako, A.A.; Robinson, S. The application of discrete event simulation and system dynamics in the logistics and supply chain context. Decis. Support Syst. 2012, 52, 802–815. [Google Scholar] [CrossRef]
- Katsaliaki, K.; Mustafee, N. Applications of simulation within the healthcare context. J. Oper. Res. Soc. 2011, 62, 1431–1451. [Google Scholar] [CrossRef] [PubMed]
- Karnon, J.; Stahl, J.; Brennan, A.; Caro, J.J.; Mar, J.; Möller, J. Modeling Using Discrete Event Simulation: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force–4. Med. Decis. Mak. 2012, 32, 701–711. [Google Scholar] [CrossRef]
- Robinson, S.; Radnor, Z.J.; Burgess, N.; Worthington, C. SimLean: Utilising simulation in the implementation of lean in healthcare. Eur. J. Oper. Res. 2012, 219, 188–197. [Google Scholar] [CrossRef]
- Zhang, X. Application of discrete event simulation in health care: A systematic review. BMC Health Serv. Res. 2018, 18, 687. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.J.; Hutabarat, W.; Oyekan, J.; Tiwari, A. Discrete event simulation and virtual reality use in industry: New opportunities and future trends. IEEE Trans. Hum. Mach. Syst. 2016, 46, 882–894. [Google Scholar] [CrossRef]
- Chan, W.K.V.; Son, Y.J.; Macal, C.M. Agent-based simulation tutorial-simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation. In Proceedings of the 2010 Winter Simulation Conference, Baltimore, MD, USA, 5–8 December 2010; IEEE: New York, NY, USA, 2010; pp. 135–150. [Google Scholar] [CrossRef]
- Zhu, H.; Martin, R.V.; Oxford, C.R.; Liu, W.; Hou, W. Ambient Sulfate Simulation over the Global South: Insights from GEOS-Chem and the SPARTAN Measurement Network. In Proceedings of the AGU Fall Meeting Abstracts 2024, Washington, WA, USA, 9–13 December 2024; Volume 2024, p. GC22C–02. [Google Scholar]
- Akpan, I.J.; Offodile, O.F. The role of virtual reality simulation in manufacturing in industry 4.0. Systems 2024, 12, 26. [Google Scholar] [CrossRef]
- Tsinarakis, G.; Sarantinoudis, N.; Arampatzis, G. A discrete process modelling and simulation methodology for industrial systems within the concept of digital twins. Appl. Sci. 2022, 12, 870. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital twin paradigm: A systematic literature review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Khaled, I.; Bennebach, M.; Vasiukov, D.; Shakoor, M.; Chaki, S. Digital twin for real-time pressure vessels fatigue life prediction. Adv. Mech. Eng. 2025, 17, 16878132251327666. [Google Scholar] [CrossRef]
- Onggo, B.S. Symbiotic simulation system (S3) for industry 4.0. In Simulation for Industry 4.0: Past, Present, and Future; Springer International Publishing: Cham, Switzerland, 2019; pp. 153–165. [Google Scholar]
- Aretoulaki, E.; Ponis, S.T.; Plakas, G.; Tzanetou, D. Discrete event simulation and Digital Twins in warehouse logistics: A bibliometric and content analysis-based systematic literature review. Int. J. Comput. Integr. Manuf. 2024, 37, 1376–1403. [Google Scholar] [CrossRef]
- Polini, W.; Corrado, A. Digital twin of composite assembly manufacturing process. Int. J. Prod. Res. 2020, 58, 5238–5252. [Google Scholar] [CrossRef]
- Sakr, A.H.; Aboelhassan, A.; Yacout, S.; Bassetto, S. Building discrete-event simulation for digital twin applications in production systems. In Proceedings of the 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras, Sweden, 7–10 September 2021; IEEE: New York, NY, USA, 2021; pp. 1–8. [Google Scholar]
- Agalianos, K.; Ponis, S.T.; Aretoulaki, E.; Plakas, G.; Efthymiou, O. Discrete event simulation and digital twins: Review and challenges for logistics. Procedia Manuf. 2020, 51, 1636–1641. [Google Scholar] [CrossRef]
- Zhong, X.; Babaie Sarijaloo, F.; Prakash, A.; Park, J.; Huang, C.; Barwise, A.; Herasevich, V.; Gajic, O.; Pickering, B.; Dong, Y. A multidisciplinary approach to the development of digital twin models of critical care delivery in intensive care units. Int. J. Prod. Res. 2022, 60, 4197–4213. [Google Scholar] [CrossRef]
- Basaglia, A.; Spacone, E.; van de Lindt, J.W.; Kirsch, T.D. A discrete-event simulation model of hospital patient flow following major earthquakes. Int. J. Disaster Risk Reduct. 2022, 71, p102825. [Google Scholar] [CrossRef]
- de Paula Ferreira, W.; Armellini, F.; De Santa-Eulalia, L.A. Simulation in industry 4.0: A state-of-the-art review. Comput. Ind. Eng. 2020, 149, 106868. [Google Scholar] [CrossRef]
- Xu, J.; Huang, E.; Hsieh, L.; Lee, L.H.; Jia, Q.S.; Chen, C.H. Simulation optimization in the era of Industrial 4.0 and the Industrial Internet. J. Simul. 2016, 10, 310–320. [Google Scholar] [CrossRef]
- Wilson, R.; Mercier, P.H.; Navarra, A. Integrated artificial neural network and discrete event simulation framework for regional development of refractory gold systems. Mining 2022, 2, 123–154. [Google Scholar] [CrossRef]
- Krause, T. AI-based discrete-event simulations for manufacturing schedule optimization. In Proceedings of the 4th International Conference on Algorithms, Computing and Systems, Rabat, Morocco, 6–8 January 2020; ACM: Rabat, Morocco, 2020; pp. 87–91. [Google Scholar]
- Atalan, A.; Şahin, H.; Atalan, Y.A. Integration of machine learning algorithms and discrete-event simulation for the cost of healthcare resources. Healthcare 2022, 10, 1920. [Google Scholar] [CrossRef]
- Lang, S.; Behrendt, F.; Lanzerath, N.; Reggelin, T.; Müller, M. Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production. In Proceedings of the Winter Simulation Conference (WSC), Orlando, FL, USA, 14–18 December 2020; IEEE: New York, NY, USA, 2020; pp. 3057–3068. [Google Scholar]
- Greasley, A.; Edwards, J.S. Enhancing discrete-event simulation with big data analytics: A review. J. Oper. Res. Soc. 2021, 72, 247–267. [Google Scholar] [CrossRef]
- Frydenlund, E.; Mart’ınez, J.; Padilla, J.J.; Palacio, K.; Shuttleworth, D. Modeler in a box: How can large language models aid in the simulation modeling process? Simulation 2024, 100, 727–749. [Google Scholar] [CrossRef]
- Akpan, I.J.; Kobara, Y.M.; Owolabi, J.; Akpan, A.A.; Offodile, O.F. Conversational and generative artificial intelligence and human–chatbot interaction in education and research. Int. Trans. Oper. Res. 2025, 32, 1251–1281. [Google Scholar] [CrossRef]
- Giabbanelli, P.J. Gptbased models meet simulation: How to efficiently use large-scale pre-trained language models across simulation tasks. In Proceedings of the Winter Simulation Conference, San Antonio, TX, USA, 10–13 December 2023; IEEE Press: New York, NY, USA, 2024; pp. 2920–2931. [Google Scholar]
- Li, Y.; Gu, T.; Yang, C.; Li, M.; Wang, C.; Yao, L.; Gu, W.; Sun, D. AI-Assisted Hypothesis Generation to Address Challenges in Cardiotoxicity Research: Simulation Study Using ChatGPT With GPT-4o. J. Med. Internet Res. 2025, 27, e66161. [Google Scholar] [CrossRef]
- Akpan, J.I.; Razavi, R.; Akpan, A.A. Evolutionary trends in decision sciences education research from simulation and games to big data analytics and generative artificial intelligence. Big Data 2025. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Barrios, M.; Ishizaka, A.; Barbati, M.; Arias-Fonseca, S.; Khan, J.; Gul, M.; Yücesan, M.; Alfaro-Saíz, J.J.; Pérez-Aguilar, A. Integrating discrete-event simulation and artificial intelligence for shortening bed waiting times in hospitalization departments during respiratory disease seasons. Comput. Ind. Eng. 2024, 194, 110405. [Google Scholar] [CrossRef]
- Ortiz-Barrios, M.; Arias-Fonseca, S.; Ishizaka, A.; Barbati, M.; Avendaño-Collante, B.; Navarro-Jiménez, E. Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study. J. Bus. Res. 2023, 160, 113806. [Google Scholar] [CrossRef] [PubMed]
- Haas, P.J. Tutorial: Artificial Neural Networks for Discrete-Event Simulation. In Proceedings of the 2024 Winter Simulation Conference (WSC), Orlando, FL, USA, 15–18 December 2024; IEEE: New York, NY, USA, 2024; pp. 116–130. [Google Scholar] [CrossRef]
- Akhavan, A.; Jalali, M.S. Generative AI and simulation modeling: How should you (not) use large language models like ChatGPT. Syst. Dyn. Rev. 2024, 40, e1773. [Google Scholar] [CrossRef]
- Nygren, T.; Samuelsson, M.; Hansson, P.O.; Efimova, E.; Bachelder, S. AI Versus Human Feedback in Mixed Reality Simulations: Comparing LLM and Expert Mentoring in Preservice Teacher Education on Controversial Issues. Int. J. Artif. Intell. Educ. 2025. [Google Scholar] [CrossRef]
- Jin, L.; Shen, Z.; Alhur, A.A.; Naeem, S.B. Exploring the determinants and effects of artificial intelligence (AI) hallucination exposure on generative AI adoption in healthcare. Inf. Dev. 2025. [Google Scholar] [CrossRef]
Activities/Focus | Criteria |
---|---|
Data Source(s) | SCOPUS Bibliographic Database search. |
Search Criteria | ((“discret*”) AND (“simulat*” OR “model*”)) AND PUBYEAR: 2010–2024. The search generated 187,727 published documents. |
Documents Filtering, Screening, and Selection | |
Filtering | Removed: Books: 409, Erratum: 122, Retracted: 113, Letter: 78, Note: 71; Editorial: 67; Short survey: 38, Data paper: 32 [187,727–930] = 186,797 documents. Removed through SCOPUS filtering platform: Non ((“Discrete-Event Simulation”) AND (“Artificial Intelligence” OR “digital twin”)): 187,797 − 184,666 = 2131 |
Screening | Screened out 9 Irrelevant Documents as follows: Literature not addressing the topic of interest: 2131 − 54 = 2077 |
Final Documents Selection | 2077 publications from SCOPUS published between 2010 and 2024 (during COVID-19). Documents retrieved in text formats (.txt and .csv files) for analysis. |
Variable Description | Results | Variable Description Contd. | Results |
---|---|---|---|
Years of publication | 2010–2024 | Documents contents: | |
Sources (journals, proceedings, book chapters) | 947 | Keywords plus (ID) | 10,575 |
Documents information: | Author’s keywords (DE) | 4121 | |
| 885 (42.6%) | Authors and collaboration: | |
| 60 (2.9%) | Authors | 5629 |
| 1132 (54.5%) | Authors of single-authored docs | 36 |
Annual publication growth rate: | 2.03% | Single-authored docs | 124 |
Average citations per doc | 9.5 | Co-authors per doc | 3.62 |
References | 50,886 | International co-authorships % | 19.31 |
Keywords | Stemmed Co-Words | Link Strength | Keywords Contd. | Stemmed Co-Words | Link Strength |
---|---|---|---|---|---|
Discrete-Event Simulation | 973 | 494 | Waiting Time | 14 | 18 |
Simulation | 213 | 176 | Productivity | 13 | 25 |
Parallel Discrete-Event Simulation (DES) | 71 | 42 | Operations Research | 13 | 20 |
Optimization | 61 | 90 | Digital Twin | 13 | 15 |
Modeling | 55 | 83 | Performance Evaluation | 13 | 13 |
Healthcare | 35 | 52 | Time Warp | 13 | 12 |
Logistics | 31 | 37 | Maintenance | 12 | 22 |
Emergency Department | 29 | 42 | Patient Flow | 12 | 18 |
Industry 4.0 | 27 | 33 | Plant Simulation | 12 | 18 |
Devs | 24 | 13 | Machine Learning | 12 | 14 |
System Dynamics | 23 | 32 | Cost-Effectiveness | 12 | 11 |
Manufacturing | 22 | 33 | Resource Allocation | 11 | 18 |
Simulation Modeling | 20 | 22 | Supply Chain Management | 11 | 17 |
Performance | 19 | 20 | Construction Management | 11 | 13 |
Arena | 18 | 29 | Efficiency | 11 | 13 |
Supply Chain | 18 | 26 | Discrete Event Systems | 11 | 6 |
Discrete-Event | 18 | 21 | Queuing Theory | 10 | 16 |
COVID-19 | 17 | 28 | Process Improvement | 10 | 12 |
Scheduling | 17 | 24 | Synchronization | 10 | 11 |
Computer Simulation | 17 | 10 | Discrete Event | 10 | 8 |
Simulation Optimization | 15 | 11 | Process Mining | 10 | 7 |
Design Of Experiments | 14 | 21 | Simulation Model | 10 | 7 |
Year | ≥300 | ≥200 | ≥100 | ≥50 | ≥30 | ≥10 | ≥1 | NC | TP | % Cited |
---|---|---|---|---|---|---|---|---|---|---|
2010 | 0 | 0 | 4 | 7 | 6 | 18 | 56 | 20 | 111 | 82% |
2011 | 0 | 1 | 0 | 11 | 4 | 22 | 56 | 26 | 120 | 78% |
2012 | 1 | 0 | 3 | 5 | 8 | 33 | 60 | 27 | 137 | 80% |
2013 | 0 | 0 | 0 | 3 | 10 | 38 | 67 | 6 | 124 | 95% |
2014 | 0 | 0 | 2 | 5 | 8 | 32 | 56 | 17 | 120 | 86% |
2015 | 0 | 0 | 0 | 4 | 8 | 38 | 69 | 16 | 135 | 88% |
2016 | 0 | 0 | 1 | 5 | 12 | 35 | 89 | 18 | 160 | 89% |
2017 | 0 | 0 | 0 | 4 | 6 | 41 | 79 | 25 | 155 | 84% |
2018 | 0 | 0 | 1 | 3 | 6 | 38 | 68 | 9 | 125 | 93% |
2019 | 0 | 0 | 0 | 2 | 6 | 31 | 83 | 26 | 148 | 82% |
2020 | 0 | 0 | 0 | 6 | 0 | 37 | 94 | 26 | 163 | 84% |
2021 | 0 | 0 | 0 | 3 | 4 | 27 | 86 | 27 | 147 | 82% |
2022 | 0 | 0 | 0 | 0 | 2 | 25 | 87 | 30 | 144 | 79% |
2023 | 0 | 0 | 0 | 0 | 0 | 11 | 76 | 54 | 141 | 62% |
2024 | 0 | 0 | 0 | 0 | 0 | 1 | 51 | 95 | 147 | 35% |
Total Pubs | 1 | 1 | 11 | 58 | 80 | 427 | 1077 | 422 | 2077 |
Rank | Paper | Focus | Sources | TC | AC P/Year | Citable Years |
---|---|---|---|---|---|---|
1 | [58] | DES and system dynamics in the logistics and supply chain context | Decision Support Systems | 347 | 24.79 | 14 |
2 | [59] | Applications of simulation within the healthcare context | Journal of the Operational Research Society | 211 | 17.58 | 12 |
3 | [60] | The application of DES in a health care setting | Medical Decision Making | 187 | 13.36 | 14 |
4 | [61] | SimLean: Utilising simulation in the implementation of lean-in healthcare | European Journal of Operational Research | 184 | 14.15 | 13 |
5 | [62] | A review of DES applications in healthcare. | BMC Health Services Research | 171 | 21.38 | 8 |
6 | [63] | Current and future trends of DES and virtual reality use in industry | IEEE Transaction on Human-Machine System | 169 | 16.9 | 10 |
7 | [22] | Combining system dynamics and discrete-event simulation in healthcare | Proc. Winter Simulation Conf. | 129 | 8.6 | 15 |
8 | [64] | Comparing agent-based simulation with DES in modeling emergency behaviors | Proc. Winter Simulation Conf. | 115 | 7.7 | 15 |
9 | [40] | DES method in construction engineering and management | Journalof Construction Engineering Management | 110 | 7.33 | 15 |
10 | [23] | Comparing DES and systems dynamics application in healthcare | European Journal of Operational Research | 108 | 9 | 12 |
Rank | Sources | NP | TC | AVTC | Pub_Start_Yr. |
---|---|---|---|---|---|
1 | Proceedings—Winter Simulation Conference | 205 | 1667 | 8.1 | 2010 |
2 | Simulation | 23 | 430 | 18.7 | 2010 |
3 | Journal of Simulation | 29 | 304 | 10.5 | 2010 |
4 | Simulation Modelling Practice and Theory | 17 | 621 | 36.5 | 2011 |
5 | European Journal of Operational Research | 12 | 622 | 51.8 | 2010 |
6 | Computers and Industrial Engineering | 11 | 330 | 30.0 | 2014 |
7 | Journal of the Operational Research Society | 14 | 386 | 27.6 | 2010 |
8 | Medical Decision Making | 16 | 449 | 28.1 | 2010 |
9 | Procedia CIRP | 20 | 217 | 10.9 | 2014 |
10 | Value In Health | 13 | 429 | 33.0 | 2010 |
11 | IFAC-Papers Online | 16 | 166 | 10.4 | 2015 |
12 | ACM Transactions on Modeling and Comp. Simulation | 19 | 181 | 9.5 | 2011 |
13 | Automation in Construction | 9 | 342 | 38.0 | 2012 |
14 | BMC Health Services Research | 9 | 317 | 35.2 | 2011 |
15 | Health Care Management Science | 7 | 288 | 41.1 | 2011 |
16 | International Journal of Advanced Manufacturing Technology | 9 | 155 | 17.2 | 2011 |
17 | Lecture Notes in Comp Science; Subseries Lecture Notes in Artificial Intelligence; Lecture Notes in Bioinformatics | 28 | 158 | 5.6 | 2010 |
18 | PLOS ONE | 11 | 186 | 16.9 | 2011 |
19 | Proceedings of the 2013 Winter Simulation Conference—Simulation: Making Decisions in A Complex World | 12 | 107 | 8.9 | 2013 |
20 | Journal of Construction Engineering and Management | 6 | 280 | 46.7 | 2010 |
Country | Publications | SCP | MCP | TC | ATC (Pub) |
---|---|---|---|---|---|
United States | 200 | 165 | 35 | 2517 | 12.59 |
United Kingdom | 98 | 76 | 22 | 2315 | 23.62 |
China | 79 | 70 | 9 | 703 | 8.9 |
Germany | 73 | 60 | 13 | 995 | 13.63 |
Italy | 62 | 47 | 15 | 693 | 11.18 |
Canada | 60 | 52 | 8 | 1214 | 20.23 |
Brazil | 44 | 36 | 8 | 530 | 12.05 |
Sweden | 36 | 23 | 13 | 470 | 13.06 |
France | 33 | 23 | 10 | 198 | 6 |
Australia | 30 | 19 | 11 | 746 | 24.87 |
India | 29 | 25 | 4 | 118 | 4.07 |
Korea | 24 | 22 | 2 | 267 | 11.13 |
Malaysia | 24 | 20 | 4 | 147 | 6.13 |
Turkey | 24 | 15 | 9 | 285 | 11.88 |
Indonesia | 22 | 20 | 2 | 57 | 2.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akpan, I.J.; Etti, G.E. Computer Simulation Everywhere: Mapping Fifteen Years Evolutionary Expansion of Discrete-Event Simulation and Integration with Digital Twin and Generative Artificial Intelligence. Symmetry 2025, 17, 1272. https://doi.org/10.3390/sym17081272
Akpan IJ, Etti GE. Computer Simulation Everywhere: Mapping Fifteen Years Evolutionary Expansion of Discrete-Event Simulation and Integration with Digital Twin and Generative Artificial Intelligence. Symmetry. 2025; 17(8):1272. https://doi.org/10.3390/sym17081272
Chicago/Turabian StyleAkpan, Ikpe Justice, and Godwin Esukuku Etti. 2025. "Computer Simulation Everywhere: Mapping Fifteen Years Evolutionary Expansion of Discrete-Event Simulation and Integration with Digital Twin and Generative Artificial Intelligence" Symmetry 17, no. 8: 1272. https://doi.org/10.3390/sym17081272
APA StyleAkpan, I. J., & Etti, G. E. (2025). Computer Simulation Everywhere: Mapping Fifteen Years Evolutionary Expansion of Discrete-Event Simulation and Integration with Digital Twin and Generative Artificial Intelligence. Symmetry, 17(8), 1272. https://doi.org/10.3390/sym17081272