Detection of Trends and Anomalies with MACD and RSI Market Indicators for Temperature and Precipitation
Abstract
1. Introduction
2. Methodology
2.1. Study Area and the Data Set
2.2. Moving Average Convergence–Divergence (MACD)
2.3. Relative Strength Index (RSI)
2.4. Mann–Kendall Test
2.5. Innovative Şen Trend Test
3. Results and Discussions
3.1. MACD and RSI Results
3.2. Mann–Kendall Test Results
3.3. Innovative Şen Trend Test Results
3.4. Discussions
4. Conclusions
- Minimum, maximum, and average surface temperatures have shown a significant upward trend since the mid-1990s.
- In all temperature types, due to the relativity, 1992 stands out as the low extreme period and 2010 as the high extreme period.
- In precipitation, a slight decreasing trend was observed in the long term. The negatively sloping regression line in the RSI graph shows that precipitation values generally tend to decrease over time.
- MACD analyses revealed partial fluctuations and short-term trend changes, emphasizing how strong the increases or decreases in recent years have been compared to the past.
- The 50 reference lines and extreme values in the RSI approach indicated that significant deviations (anomalies) can be detected in both temperature and precipitation.
- The application of the Mann–Kendall and innovative Şen trend test showed that both techniques are in agreement with the ongoing trends in general. These results do not disprove the results of the MACD and RSI for the whole period. On the contrary, the results of these methods support the results of MACD and RSI when considering the whole period.
- It is worth noting that MACD and RSI do not only detect the current trend. They also detect extremum points and historical trends of the given climatological time series.
5. Limitations of the Research
Funding
Data Availability Statement
Conflicts of Interest
List of Abbreviations
MACD | Moving Average Convergence–Divergence |
RSI | Relative Strength Index |
TSMS | Turkish State Meteorological Service |
MK | Mann–Kendall |
EMA | Exponential Moving Averages |
Tmin | Observed Annual Average Minimum Surface Temperature |
Tmax | Observed Annual Average Maximum Surface Temperature |
Tmean | Observed Annual Average Mean Surface Temperature |
P | Observed Annual Precipitation |
ADX | Average Directional Movement |
LSTM | Long Short-Term Memory |
NOAA | National Oceanic and Atmospheric Administration |
CRU | Climatic Research Unit |
CCKP | Climate Change Knowledge Portal |
ITA | Innovative Trend Analysis |
References
- TSMS. The State of the Türkiye’s Climate in 2022. 2024. Available online: https://www.mgm.gov.tr/eng/Yearly-Climate/State_of_the_Climate_in_Turkey_in_2022.pdf (accessed on 15 August 2024).
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Change 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Mallick, J.; Talukdar, S.; Alsubih, M.; Salam, R.; Ahmed, M.; Kahla, N.B.; Shamimuzzaman, M. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor. Appl. Climatol. 2021, 143, 823–841. [Google Scholar] [CrossRef]
- Phuong, D.N.D.; Tram, V.N.Q.; Nhat, T.T.; Ly, T.D.; Loi, N.K. Hydro-meteorological trend analysis using the Mann-Kendall and innovative-Şen methodologies: A case study. Int. J. Glob. Warm. 2020, 20, 145–164. [Google Scholar] [CrossRef]
- Zhang, Y.; Cabilio, P.; Nadeem, K. Improved seasonal Mann–Kendall tests for trend analysis in water resources time series. In Advances in Time Series Methods and Applications: The A. Ian McLeod Festschrift; Springer: New York, NY, USA, 2016; pp. 215–229. [Google Scholar]
- Ashraf, M.S.; Ahmad, I.; Khan, N.M.; Zhang, F.; Bilal, A.; Guo, J. Streamflow variations in monthly, seasonal, annual and extreme values using Mann-Kendall, Spearmen’s Rho and innovative trend analysis. Water Resour. Manag. 2021, 35, 243–261. [Google Scholar] [CrossRef]
- Güçlü, Y.S. Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. J. Hydrol. 2020, 584, 124674. [Google Scholar] [CrossRef]
- Da Silva, R.M.; Santos, C.A.; Moreira, M.; Corte-Real, J.; Silva, V.C.; Medeiros, I.C. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Gomis-Cebolla, J.; Rattayova, V.; Salazar-Galán, S.; Francés, F. Evaluation of ERA5 and ERA5-Land reanalysis precipitation datasets over Spain (1951–2020). Atmos. Res. 2023, 284, 106606. [Google Scholar] [CrossRef]
- Luo, H.; Quaas, J.; Han, Y. Diurnally asymmetric cloud cover trends amplify greenhouse warming. Sci. Adv. 2024, 10, eado5179. [Google Scholar] [CrossRef]
- Dai, A. Hydroclimatic trends during 1950–2018 over global land. Clim. Dyn. 2021, 56, 4027–4049. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-evaluation of the power of the Mann-Kendall test for detecting monotonic trends in hydrometeorological time series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Garba, H.; Udokpoh, U.U. Analysis of trend in meteorological and hydrological time-series using Mann-Kendall and Sen’s slope estimator statistical test in Akwa Ibom state, Nigeria. Int. J. Environ. Clim. Change 2023, 13, 1017–1035. [Google Scholar] [CrossRef]
- Salami, A.W.; Ikpee, O.D.; Ibitoye, A.B.; Oritola, S.F. Trend analysis of hydro-meteorological variables in the coastal area of Lagos using Mann-Kendall trend and Standard Anomaly Index methods. J. Appl. Sci. Environ. Manag. 2016, 20, 797–808. [Google Scholar] [CrossRef]
- Rosmann, T.; Domínguez, E.; Chavarro, J. Comparing trends in hydrometeorological average and extreme data sets around the world at different time scales. J. Hydrol. Reg. Stud. 2016, 5, 200–212. [Google Scholar] [CrossRef]
- Almazroui, M.; Şen, Z. Trend analyses methodologies in hydro-meteorological records. Earth Syst. Environ. 2020, 4, 713–738. [Google Scholar] [CrossRef]
- Gündüz, F.; Zeybekoğlu, U. Analysis of Temperature and Precipitation Series of Hirfanli Dam Basin by Mann Kendall, Spearman’s Rho and Innovative Trend Analysis. Turk. J. Eng. 2024, 8, 11–19. [Google Scholar] [CrossRef]
- Demir, V.; Kisi, O. Comparison of Mann-Kendall and innovative trend method (Şen trend) for monthly total precipitation (Middle Black Sea Region, Turkey). In Proceedings of the 3rd International Balkans Conference on Challenges of Civil Engineering, Tirana, Albania, 19–21 May 2016. [Google Scholar]
- Alashan, S. Can innovative trend analysis identify trend change points? Brill. Eng. 2020, 1, 6–15. [Google Scholar] [CrossRef]
- Yilmaz, E. Türkiye’de aylık yağış eğilimleri, yağış kaymaları ve yağış Eğilim Rejimleri (1971–2010) (Monthly Precipitation Trends, Precipitation Temporal Shifts and Precipitation Trends Regimes in Turkey (1971–2010)). J. Hum. Sci. 2018, 15, 2066–2091. [Google Scholar] [CrossRef]
- Hadi, S.J.; Tombul, M. Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorol. Appl. 2018, 25, 445–455. [Google Scholar] [CrossRef]
- Yetik, A.K.; Arslan, B.; Şen, B. Trends and variability in precipitation across Turkey: A multimethod statistical analysis. Theor. Appl. Climatol. 2024, 155, 473–488. [Google Scholar] [CrossRef]
- Gümüş, V.; Avşaroğlu, Y.; Şimşek, O.; Doğan Dinsever, L. Procjena trendova meteoroloških vremenskih nizova u jugoistočnoj Anatoliji, Turska Evaluation of meteorological time series trends in Southeastern Anatolia, Turkey. Geofizika 2023, 40, 51–73. [Google Scholar] [CrossRef]
- Kahya, E.; Kalaycı, S. Trend analysis of streamflow in Turkey. J. Hydrol. 2004, 289, 128–144. [Google Scholar] [CrossRef]
- Chong, T.T.L.; Ng, W.K. Technical analysis and the London stock exchange: Testing the MACD and RSI rules using the FT30. Appl. Econ. Lett. 2008, 15, 1111–1114. [Google Scholar] [CrossRef]
- Sami, H.M.; Ahshan, K.A.; Rozario, P.N.; Ashrafi, N. Evaluating the Prediction Accuracy of MACD and RSI for Different Stocks in Terms of Standard Market Suggestions. Can. J. Bus. Inf. Stud. 2022, 7820, 137–143. [Google Scholar] [CrossRef]
- Gold, S. The Viability of Six Popular Technical Analysis Trading Rules in Determining Effective Buy and Sell Signals: MACD, AROON, RSI, SO, OBV, and ADL. J. Appl. Financ. Res. 2015, 2, 8–29. [Google Scholar]
- Chong, T.T.L.; Ng, W.K.; Liew, V.K.S. Revisiting the Performance of MACD and RSI Oscillators. J. Risk Financ. Manag. 2014, 7, 1–12. [Google Scholar] [CrossRef]
- Cohen, G.; Cabiri, E. Can technical oscillators outperform the buy and hold strategy? Appl. Econ. 2015, 47, 3189–3197. [Google Scholar] [CrossRef]
- Şen, Z. Innovative trend significance test and applications. Theor. Appl. Climatol. 2017, 127, 939–947. [Google Scholar] [CrossRef]
- Alashan, S. Comparison of sub-series with different lengths using şen-innovative trend analysis. Acta Geophys. 2021, 71, 373–383. [Google Scholar] [CrossRef]
- Anuradha, T.; Formal, P.A.S.; RamaDevi, J. Hybrid model for rainfall prediction with statistical and technical indicator feature set. Expert Syst. Appl. 2024, 249, 123260. [Google Scholar] [CrossRef]
- Guan, S.; Wang, Y.; Liu, L.; Gao, J.; Xu, Z.; Kan, S. Ultra-short-term wind power prediction method combining financial technology feature engineering and XGBoost algorithm. Heliyon 2023, 9, e16938. [Google Scholar] [CrossRef]
- World Bank. Climate Change Knowledge Portal. 2024. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 25 June 2024).
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- TSMS. Türkiye İklimi. 2024. Available online: https://www.mgm.gov.tr/iklim/iklim.aspx?key=C (accessed on 9 July 2024).
- Appel, G. Technical Analysis Power Tools for Active Investors; F T Press: Upper Saddle River, NJ, USA, 2005; p. 166. [Google Scholar]
- Porselvi, R.; Meenakshi, A. A Study on the Effectiveness of Moving Average Convergence and Divergence (MACD). Educ. Adm. Theory Pract. 2024, 30, 8609–8618. [Google Scholar]
- Majaski, C. Exponential Moving Average vs. Simple Moving Average: What’s the Difference? Investopedia. 2023. Available online: https://www.investopedia.com/ask/answers/difference-between-simple-exponential-moving-average/ (accessed on 23 May 2024).
- Dolan, B. What Is MACD? Investopedia. 2024. Available online: https://www.investopedia.com/terms/m/macd.asp#:~:text=MACD%20is%20calculated%20by%20subtracting,an%20exponentially%20weighted%20moving%20average (accessed on 28 January 2025).
- Cohen, G. Intraday algorithmic trading strategies for cryptocurrencies. Rev. Quant. Financ. Acc. 2023, 61, 395–409. [Google Scholar] [CrossRef]
- Wilder, J.W. New Concepts in Technical Trading Systems; Trend Research: Edmonton, AB, Canada, 1978; ISBN 0-89459-027-8. [Google Scholar]
- Fernando, J. Relative Strength Index (RSI) Indicator Explained with Formula. Investopedia. 2024. Available online: https://www.investopedia.com/terms/r/rsi.asp (accessed on 28 January 2025).
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Oxford University Press: Oxford, UK, 1948. [Google Scholar]
- Şen, Z. Innovative trend analysis methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- NOAA. Anomalies vs. Temperature. 2024. Available online: https://www.ncei.noaa.gov/access/monitoring/dyk/anomalies-vs-temperature (accessed on 15 August 2024).
- NOAA. Climate Change Impacts. 2025. Available online: https://www.noaa.gov/education/resource-collections/climate/climate-change-impacts (accessed on 28 January 2025).
Max. | Min. | Mean | Standard Deviation | Skewness Coefficient | |
---|---|---|---|---|---|
Observed annual average minimum surface temperature (°C) (Tmin) | 7.4 | 3.8 | 5.4 | 0.7 | 0.4 |
Observed annual average maximum surface temperature (°C) (Tmax) | 19.0 | 15.2 | 16.9 | 0.7 | 0.5 |
Observed annual average mean surface temperature (°C) (Tmean) | 13.2 | 9.6 | 11.1 | 0.7 | 0.5 |
Observed annual precipitation (mm) (P) | 743.9 | 439.4 | 597.7 | 59.6 | 0.1 |
Parameter | Lowest Extremums | Highest Extremums | Slope Value | General Trend |
---|---|---|---|---|
Minimum Surface Temperature (°C) | 1933 1992 | 1955 2010 2018 | 0.0288 | Increasing |
Maximum Surface Temperature (°C) | 1920 1992 | 1999 2010 | 0.0690 | Increasing |
Mean Surface Temperature (°C) | 1920 1933 1992 | 1955 2010 2018 | 0.0505 | Increasing |
Precipitation (mm) | 1932 2008 | 1931 1963 2009 | −0.0133 | Decreasing |
Minimum Surface Temperature (°C) | |||||
---|---|---|---|---|---|
MACD Crossing Center Line | MACD Crossing Signal Line | ||||
Upward Trend Periods | Downward Trend Periods | Mixed | Upward Trend Periods | Downward Trend Periods | Mixed |
1936–1949 1952–1973 1979–1988 1995–Ongoing | 1949–1952 1973–1979 1988–1995 | - | 1937–1941 1953–1972 1978–1987 1994–Ongoing | 1941–1953 1972–1978 1987–1994 | - |
Maximum Surface Temperature (°C) | |||||
MACD crossing center line | MACD crossing signal line | ||||
Upward Trend Periods | Downward Trend Periods | Mixed | Upward Trend Periods | Downward Trend Periods | Mixed |
1952–1972 1998–Ongoing | 1949–1952 1972–1998 | - | 1994–Ongoing | 1941–1952 1967–1978 | 1952–1967 1978–1984 |
Mean Surface Temperature (°C) | |||||
MACD crossing center line | MACD crossing signal line | ||||
Upward Trend Periods | Downward Trend Periods | Mixed | Upward Trend Periods | Downward Trend Periods | Mixed |
1934–1948 1951–1972 1995–Ongoing | 1948–1951 1972–1995 | - | 1936–1945 1994–Ongoing | 1945–1954 1991–1994 1971–1978 | 1954–1971 1978–1991 |
Precipitation (mm) | |||||
MACD crossing center line | MACD crossing signal line | ||||
Upward Trend Periods | Downward Trend Periods | Mixed | Upward Trend Periods | Downward Trend Periods | Mixed |
1936–1949 1951–1956 1963–1972 1979–1983 1987–1989 1996–2007 2009–2019 | 1949–1951 1956–1963 1972–1979 1983–1987 1989–1996 2007–2009 | - | 1935–1945 1962–1972 1978–1983 1987–1989 1999–2007 2009–2019 | 1945–1962 1972–1978 1983–1987 1989–1999 2007–2009 | - |
Summary of Key Years | |||
---|---|---|---|
Year | Parameter | Evaluation Criteria | Explanation |
1952 | Tmin | MACD line crossing zero line | An increasing trend for a long period (until 1973) |
1995 | Tmin | MACD line crossing zero line | An increasing trend with a high momentum, and it is still valid in 2022 |
1935 | Tmin | RSI | Lowest RSI value for the whole period |
2010 | Tmin | RSI | Highest RSI value for the whole period |
1972 | Tmax | MACD line crossing zero line | A decreasing trend for a long period (until 1998) |
1998 | Tmax | MACD line crossing zero line | An increasing trend with a high momentum, and it is still valid in 2022 |
1920 | Tmax | RSI | Lowest RSI value for the whole period |
2010 | Tmax | RSI | Highest RSI value for the whole period |
1934 | Tmean | MACD line crossing zero line | A partly increasing trend for a long period (until 1972) There is only a short decreasing period between 1948–1951 |
1972 | Tmean | MACD line crossing zero line | A decreasing trend for a long period (until 1995) |
1995 | Tmean | MACD line crossing zero line | An increasing trend with a high momentum, and it is still valid in 2022 |
1920 | Tmean | RSI | Lowest RSI value for the whole period |
2010 | Tmean | RSI | Highest RSI value for the whole period |
1936 | Precipitation | MACD line crossing zero line | It is the start point of longest increasing trend |
1931 | Precipitation | RSI | Highest RSI value for the whole period |
1932 | Precipitation | RSI | Lowest RSI value for the whole period |
Parameter | MK Value | z-Stat | Trend | Direction |
---|---|---|---|---|
Tmin | 2708 | 5.991 | Yes | Positive |
Tmax | 2160 | 4.778 | Yes | Positive |
Tmean | 2480 | 5.486 | Yes | Positive |
Precipitation | 71 | 0.155 | No | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, Y.Z. Detection of Trends and Anomalies with MACD and RSI Market Indicators for Temperature and Precipitation. Symmetry 2025, 17, 1268. https://doi.org/10.3390/sym17081268
Kaya YZ. Detection of Trends and Anomalies with MACD and RSI Market Indicators for Temperature and Precipitation. Symmetry. 2025; 17(8):1268. https://doi.org/10.3390/sym17081268
Chicago/Turabian StyleKaya, Yunus Ziya. 2025. "Detection of Trends and Anomalies with MACD and RSI Market Indicators for Temperature and Precipitation" Symmetry 17, no. 8: 1268. https://doi.org/10.3390/sym17081268
APA StyleKaya, Y. Z. (2025). Detection of Trends and Anomalies with MACD and RSI Market Indicators for Temperature and Precipitation. Symmetry, 17(8), 1268. https://doi.org/10.3390/sym17081268