Inequality Constraints on Statistical Submanifolds of Norden-Golden-like Statistical Manifold
Abstract
1. Introduction
2. Preliminaries
2.1. Norden Golden Manifold (NGM)
2.2. Statistical Manifold and Statistical Submanifold
2.3. Norden Golden-like Statistical Manifold (NGLSM)
2.4. Example
- Verification of the Conditions:
3. Main Results
- The proof of Corollary 2 is obvious.
- The inequality in Theorem 1 generalizes corresponding Chen-type inequalities established for statistical submanifolds in Kähler-like, Sasakian-like, and Hessian statistical manifolds [30,31,37]. By incorporating the structure tensor ℘ of the Norden golden-like manifold, this result holds under broader geometric conditions, reducing to classical cases when ℘ assumes standard forms.
4. Chen Inequality
- The second fundamental forms satisfy
- The mixed components vanish, except for :
- The proof of Corollary 4 is obvious.
- Theorem 2 provides a generalized Chen-type inequality for statistical submanifolds in NGLSM, expanding upon the results in [12,18,19]. This highlights the role of golden structures and dual connections in shaping curvature bounds. The non-minimality condition in Corollary 4 expands upon prior findings in golden Riemannian settings [6,9].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SC | Sectional curvature |
NGLSM | Norden golden-like statistical manifold |
NGM | Norden golden manifold |
LDANGSRM | Locally decomposable almost-Norden golden semi- Riemannian manifold |
NGSF | Norden golden space form |
L.C.C. | Levi-Civita connection |
TRSS | Totally real statistical submanifold |
References
- Spinadel, V. On characterization of the onset to chaos. Chaos Solitons Fractals 1997, 8, 1631–1643. [Google Scholar] [CrossRef]
- Spinadel, V. The metallic means family and multifractal spectra. Nonlinear Anal. 1999, 36, 721–745. [Google Scholar] [CrossRef]
- Amari, S. Differential-Geometrical Methods in Statistics; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Nomizu, K.; Katsumi, N.; Sasaki, T. Affine Differential Geometry: Geometry of Affine Immersions; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Opozda, B. A sectional curvature for statistical structures. Linear Algebra Appl. 2016, 497, 134–161. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Akyol, M.A. Several fundamental inequalities for submanifolds immersed in Riemannian manifolds equipped with golden structure. Filomat 2024, 38, 8925–8935. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Uddin, S. Inequalities for golden Lorentzian manifolds with gsm U-connection. Filomat 2024, 38, 9607–9622. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Mihai, I. Inequalities for the generalized normalized δ-Casorati curvatures of submanifolds in golden Riemannian manifolds. Axioms 2023, 12, 952. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Uddin, S. Some basic inequalities on golden Riemannian product manifolds with constant curvatures. Filomat 2023, 37, 1155–1166. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Uddin, S. On some inequalities for metallic Riemannian space forms. Filomat 2023, 37, 5443–5454. [Google Scholar] [CrossRef]
- Macsim, G.; Mihai, A.; Mihai, I. δ(2,2)-invariant for Lagrangian submanifolds in quaternionic space forms. Mathematics 2020, 8, 480. [Google Scholar] [CrossRef]
- Mihai, A.; Mihai, I. The δ(2,2)-invariant on statistical submanifold in Hessian manifolds of constant Hessian curvature. Entropy 2020, 22, 164. [Google Scholar] [CrossRef]
- Mustafa, A.; Uddin, S.; Al-Solamy, F.R. Chen-Ricci inequality for warped products in Kenmotsu space forms and its applications. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 3585–3602. [Google Scholar] [CrossRef]
- Oprea, T. Chen’s inequality in the Lagrangian case. Colloq. Math. 2007, 108, 163–169. [Google Scholar] [CrossRef]
- Takano, K. Statistical manifold with almost complex structures and its statistical submersions. Tensor New Ser. 2004, 65, 128–142. [Google Scholar]
- Vîlcu, A.D.; Vîlcu, G.E. Statistical manifold with almost quaternionic structures and quaternionic Kähler-like statistical submersions. Entropy 2015, 17, 6213–6228. [Google Scholar] [CrossRef]
- Aquib, M. On some inequalities for statistical submanifold of quaternion Kähler-like statistical space forms. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950129. [Google Scholar] [CrossRef]
- Chen, B.Y.; Mihai, A.; Mihai, I. A Chen first inequality for statistical submanifold in Hessian manifolds of constant Hessian curvature. Results Math. 2019, 74, 165. [Google Scholar] [CrossRef]
- Aytimur, H.; Kon, M.; Mihai, A.; Özgür, C.; Takano, K. Chen inequalities for statistical submanifold of Kähler-like statistical manifold. Mathematics 2019, 7, 1202. [Google Scholar] [CrossRef]
- Aquib, M.; Boyom, M.N.; Alkhaldi, A.H.; Shahid, M.H. Chen inequalities for statistical submanifold in Sasakian statistical manifold. In Geometric Science of Information, GSI 2019; Nielsen, F., Barbaresco, F., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11712. [Google Scholar]
- Aquib, M.; Shahid, M.H. Generalized normalized δ-Casorati curvature for statistical submanifold in quaternion Kähler-like statistical space forms. J. Geom. 2018, 109, 13. [Google Scholar] [CrossRef]
- Alkhaldi, A.H.; Aquib, M.; Siddiqui, A.N.; Shahid, M.H. Pinching theorems for statistical submanifold in Sasaki-like statistical space forms. Entropy 2018, 20, 690. [Google Scholar] [CrossRef]
- Aydin, M.E.; Mihai, A.; Mihai, I. Some inequalities on submanifolds in statistical manifold of constant curvature. Filomat 2015, 29, 465–477. [Google Scholar] [CrossRef]
- Mihai, A.; Mihai, I. Curvature invariants for statistical submanifold of Hessian manifolds of constant Hessian curvature. Mathematics 2018, 6, 55. [Google Scholar] [CrossRef]
- Siddiqui, A.N.; Al-Solamy, F.R.; Shahid, M.H.; Mihai, I. On CR-statistical submanifolds of holomorphic statistical manifolds. Filomat 2021, 35, 3571–3584. [Google Scholar] [CrossRef]
- Yano, K.; Kon, M. Structures on Manifolds; World Scientific: Singapore, 1984. [Google Scholar]
- Chen, B.Y. Differential Geometry of Warped Product Manifolds and Submanifolds; World Scientific: Singapore, 2017. [Google Scholar]
- Crasmareanu, M.; Hretcanu, C.E. Golden differential geometry. Chaos Solitons Fractals 2008, 38, 1229–1238. [Google Scholar] [CrossRef]
- Şahin, F.; Şahin, B.; Erdoğan, F.E. Golden Riemannian manifolds having constant sectional curvatures and their submanifolds. Mediterr. J. Math. 2022, 19, 171. [Google Scholar] [CrossRef]
- Kazan, A.; Kazan, S. Sasakian statistical manifolds with semi-symmetric metric connection. Univ. J. Math. Appl. 2018, 1, 226–232. [Google Scholar] [CrossRef]
- Kazaz, M.; Aslam, M.; Aquib, M. Geometric inequalities for statistical submanifolds in cosymplectic statistical manifolds. Kragujev. J. Math. 2024, 48, 393–405. [Google Scholar] [CrossRef]
- Uddin, S.; Peyghan, E.; Nourmohammadifar, L.; Bossly, R. On nearly Sasakian and nearly Kähler statistical manifolds. Mathematics 2023, 11, 2644. [Google Scholar] [CrossRef]
- Şahin, F.; Şahin, B.; Erdoğan, F.E. Norden golden manifolds with constant sectional curvature and their submanifolds. Mathematics 2023, 11, 3301. [Google Scholar] [CrossRef]
- Etayo, F.; Díaz-Fernández, A.; Santamaría, R. Classification of almost Norden golden manifolds. Bull. Malays. Math. Sci. Soc. 2020, 43, 3941–3961. [Google Scholar] [CrossRef]
- Simon, U. Affine differential geometry. In Handbook of Differential Geometry; Dillen, F., Verstraelen, L., Eds.; North-Holland: Amsterdam, The Netherlands, 2000; Volume 1, pp. 905–961. [Google Scholar]
- Vos, P.W. Fundamental equations for statistical submanifold with applications to the Bartlett correction. Ann. Inst. Stat. Math. 1989, 41, 429–450. [Google Scholar] [CrossRef]
- Lone, M.S.; Bahadir, O.; Park, C.; Hwang, I. Basic inequalities for statistical submanifolds in golden-like statistical manifolds. Open Math. 2022, 20, 153–166. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, A.K.; Choudhary, M.A.; Nisar, M.; Aloui, F. Inequality Constraints on Statistical Submanifolds of Norden-Golden-like Statistical Manifold. Symmetry 2025, 17, 1206. https://doi.org/10.3390/sym17081206
Rai AK, Choudhary MA, Nisar M, Aloui F. Inequality Constraints on Statistical Submanifolds of Norden-Golden-like Statistical Manifold. Symmetry. 2025; 17(8):1206. https://doi.org/10.3390/sym17081206
Chicago/Turabian StyleRai, Amit Kumar, Majid Ali Choudhary, Mohammed Nisar, and Foued Aloui. 2025. "Inequality Constraints on Statistical Submanifolds of Norden-Golden-like Statistical Manifold" Symmetry 17, no. 8: 1206. https://doi.org/10.3390/sym17081206
APA StyleRai, A. K., Choudhary, M. A., Nisar, M., & Aloui, F. (2025). Inequality Constraints on Statistical Submanifolds of Norden-Golden-like Statistical Manifold. Symmetry, 17(8), 1206. https://doi.org/10.3390/sym17081206