Local and Global Solutions of the 3D-NSE in Homogeneous Lei–Lin–Gevrey Spaces
Abstract
1. Introduction and Principal Results
2. Technical Lemmas
3. Proof of Theorem 1
4. Proof of Theorem 2
- Step 1: Establishing the existence of a global solution for small initial data in homogeneous Lei–Lin–Gevrey space .
- Step 2: We aim to prove Theorem 2.
5. Discussion and Perspectives
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujita, H.; Kato, T. On the Navier-Stokes initial value problem. I. Arch. Ration. Mech. Anal. 1964, 16, 269–315. [Google Scholar] [CrossRef]
- Chemin, J.M. Remarques sur l’sexistence globale pour le système de Navier-Stokes incompressible. SIAM J. Math. Anal. 1992, 23, 20–28. [Google Scholar] [CrossRef]
- Kato, T. Lp- solution of the Navier Stokes in Rm with applications to weak solutions. Math. Z. 1984, 187, 471–480. [Google Scholar] [CrossRef]
- Cannone, M. Ondelettes, Paraproduits et Navier-Stokes; Diderot, Ed.; Arts et Sciences: Kowloon, Hong Kong, 1995. [Google Scholar]
- Schorlepp, T.; Schlichting, A.; Temam, R. Symmetry breaking in Navier-Stokes flows: An analytic study. J. Fluid Mech. 2022, 945, A15. [Google Scholar]
- Cannone, M.; Karch, G. Analytic and Gevrey regularity for solutions to the Navier-Stokes equations. Math. Ann. 2023, 365, 909–932. [Google Scholar]
- Sawada, O.; Taniuchi, Y. A new class of critical spaces for the Navier-Stokes equations. J. Math. Fluid Mech. 2021; to appear. [Google Scholar]
- Lei, Z.; Lin, F. Global mild solutions of Navier Stokes equations. Commun. Pure Appl. Math. 2011, 64, 1297–1304. [Google Scholar] [CrossRef]
- Jlali, L. Global well posedness of 3D-NSE in Fourier-Lei-Lin spaces. Math. Meth. Appl. Sci. 2017, 40, 2713–2736. [Google Scholar] [CrossRef]
- Benameur, J.; Jlali, L. Long time decay of 3D-NSE in Lei-Lin-Gevrey spaces. Math. Slovaca 2020, 70, 877–892. [Google Scholar] [CrossRef]
- Biswas, A.; Martinez, V. Global Gevrey regularity for the 3D Navier-Stokes equations with periodic boundary conditions. J. Differ. Equ. 2013, 254, 3174–3190. [Google Scholar]
- Foias, C.; Temam, R. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 1989, 87, 359–369. [Google Scholar] [CrossRef]
- Chemin, J.-Y.; Masmoudi, N. About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 2001, 33, 84–112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jlali, L. Local and Global Solutions of the 3D-NSE in Homogeneous Lei–Lin–Gevrey Spaces. Symmetry 2025, 17, 1138. https://doi.org/10.3390/sym17071138
Jlali L. Local and Global Solutions of the 3D-NSE in Homogeneous Lei–Lin–Gevrey Spaces. Symmetry. 2025; 17(7):1138. https://doi.org/10.3390/sym17071138
Chicago/Turabian StyleJlali, Lotfi. 2025. "Local and Global Solutions of the 3D-NSE in Homogeneous Lei–Lin–Gevrey Spaces" Symmetry 17, no. 7: 1138. https://doi.org/10.3390/sym17071138
APA StyleJlali, L. (2025). Local and Global Solutions of the 3D-NSE in Homogeneous Lei–Lin–Gevrey Spaces. Symmetry, 17(7), 1138. https://doi.org/10.3390/sym17071138