Quasi-Periodic Dynamics and Wave Solutions of the Ivancevic Option Pricing Model Using Multi-Solution Techniques
Abstract
1. Introduction
2. Lie Analysis
3. Methodology
- j: Temporal frequency;
- : Phase shift;
- r: Spatial wave number;
- p: Spatial wave number in ;
- k: Temporal wave number in .
3.1. The Method
3.2. Unified Method
4. Soliton Solutions
- Real part:
- Imaginary part:
4.1. Solution Using Method
4.2. Solution Using Unified Method
5. Graphical Illustration and Discussion
6. Quasi-Periodic Phenomena
6.1. 2D Phase Portrait and Time Analysis
6.2. Lyapunov Exponent
6.3. Bifurcation Diagram
6.4. Multistability
7. Conclusions
- Firstly, we focus on the complex IOPM by applying Lie symmetry analysis. We identify the Lie symmetries of the model and derive the associated symmetry groups, which is pivotal for obtaining exact solutions. This approach provides a structured framework for simplifying the governing equations, making it feasible to gain deeper insights into the dynamics and solution behavior of the model.
- Secondly, we investigate soliton solutions of the IOPM using the unified solver method (USM) and the method. Through these approaches, we obtain a range of wave solutions and present an in-depth qualitative and quantitative investigation of the results. The accompanying 3D and 2D graphical illustrations significantly advance the understanding of the option pricing dynamics, providing a more comprehensive view of the solution landscape.
- These combined analytical and computational techniques offer a significant improvement in both the precision and efficiency of option pricing, making it possible to capture complex market dynamics with higher reliability. The visualizations further deepen our understanding by clearly depicting the interactions and behavior of the solution profiles, facilitating better risk assessment and more robust portfolio optimization.
- Finally, we investigate the quasi-periodic behavior of the two-dimensional dynamical system and its perturbed form using Python-based simulations. By analyzing a range of frequencies and amplitudes, We confirm the presence of quasi-periodic dynamics through the computation of the Lyapunov exponent, bifurcation diagram, and multistability analysis. This approach not only deepens the understanding of the complex dynamics within the IOPM but also contributes to the advancement of financial mathematics by introducing new insights into solution behavior and presenting a robust, comprehensive framework for tackling intricate option pricing problems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IOPM | Ivancevic Option Pricing Model |
NLPDEs | Nonlinear partial differential equations |
ODE | Ordinary differential equation |
References
- Han, T.; Rezazadeh, H.; Rahman, M.U. High-order solitary waves, fission, hybrid waves and interaction solutions in the nonlinear dissipative (2 + 1)-dimensional Zabolotskaya-Khokhlov model. Phys. Scr. 2024, 99, 115212. [Google Scholar] [CrossRef]
- Qin, X.; Yang, W.; Zhang, Z.; Wangari, V.W. Simulation and design of T-shaped barrier tops including periodic split ring resonator arrays for increased noise reduction. Appl. Acoust. 2025, 236, 110751. [Google Scholar] [CrossRef]
- AL-Essa, L.A.; Rahman, M. Analysis of Lie symmetry, bifurcations with phase portraits, sensitivity and diverse W—M-shape soliton solutions for the (2 + 1)-dimensional evolution equation. Phys. Lett. A 2024, 525, 129928. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Hong, Y. Classification, production, and carbon stock of harvested wood products in China from 1961 to 2012. BioResources 2014, 9, 4311–4322. [Google Scholar] [CrossRef]
- Leung, A.W. Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 49. [Google Scholar]
- Kopçasız, B.; Nur Kaya Sağlam, F. Exploration of Soliton Solutions for the Kaup–Newell Model Using Two Integration Schemes in Mathematical Physics. Math. Methods Appl. Sci. 2025, 48, 6477–6487. [Google Scholar] [CrossRef]
- Ansari, A.R.; Jhangeer, A.; Imran, M.; Talafha, A.M. Exploring the dynamics of multiplicative noise on the fractional stochastic Fokas-Lenells equation. Partial. Differ. Equ. Appl. Math. 2025, 14, 101232. [Google Scholar] [CrossRef]
- San, S.; Beenish; Alshammari, F.S. Analytical and Dynamical Study of Solitary Waves in a Fractional Magneto-Electro-Elastic System. Fractal Fract. 2025, 9, 309. [Google Scholar] [CrossRef]
- Chen, Q.; Baskonus, H.M.; Gao, W.; Ilhan, E. Soliton theory and modulation instability analysis: The Ivancevic option pricing model in economy. Alex. Eng. J. 2022, 61, 7843–7851. [Google Scholar] [CrossRef]
- Ali, K.K.; Tarla, S.; Ali, M.R.; Yusuf, A.; Yilmazer, R. Physical wave propagation and dynamics of the Ivancevic option pricing model. Results Phys. 2023, 52, 106751. [Google Scholar] [CrossRef]
- Saglam Ozkan, Y.; Yasar, E. Prolific new M-fractional soliton behaviors to the Schrödinger type Ivancevic option pricing model by two efficient techniques. Comput. Methods Differ. Equ. 2024, 12, 207–225. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1993; Volume 107. [Google Scholar]
- Bluman, G.W. Applications of Symmetry Methods to Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Li, J.; Zhu, X.; Feng, C.; Wen, M.; Zhang, Y. A simple and efficient three-dimensional spring element model for pore seepage problems. Eng. Anal. Bound. Elem. 2025, 176, 106225. [Google Scholar] [CrossRef]
- Liu, K.; Feng, M.; Zhao, W.; Sun, J.; Dong, W.; Wang, Y.; Mian, A. Pixel-Level Noise Mining for Weakly Supervised Salient Object Detection. IEEE Trans. Neural Netw. Learn. Syst. 2025. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, Y.; Toyoda, M. Policy iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 2910–2924. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, R.; Wu, Y.; Gui, W.; Yang, C. Stability and set stability in distribution of probabilistic Boolean networks. IEEE Trans. Autom. Control 2018, 64, 736–742. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, X.M.; Zhao, X.; Shen, T. Optimal control of Boolean control networks with average cost: A policy iteration approach. Automatica 2019, 100, 378–387. [Google Scholar] [CrossRef]
- Sağlam, F.N.K.; Kopçasız, B.; Tariq, K.U. Optical Solitons and Dynamical Structures for the Zig-zag Optical Lattices in Quantum Physics. Int. J. Theor. Phys. 2025, 64, 40. [Google Scholar] [CrossRef]
- Jhangeer, A.; Ansari, A.R.; Imran, M.; Riaz, M.B. Lie symmetry analysis, and traveling wave patterns arising the model of transmission lines. AIMS Math. 2024, 9, 18013–18033. [Google Scholar] [CrossRef]
- Samreen, M. Exploring quasi-periodic behavior, bifurcation, and traveling wave solutions in the double-chain DNA model. Chaos Solitons Fractals 2025, 192, 116052. [Google Scholar]
- Beenish; Samreen, M.; Alshammari, F.S. Exploring Solitary Wave Solutions of the Generalized Integrable Kadomtsev–Petviashvili Equation via Lie Symmetry and Hirota’s Bilinear Method. Symmetry 2025, 17, 710. [Google Scholar] [CrossRef]
- Chou, D.; Boulaaras, S.M.; Rehman, H.U.; Iqbal, I.; Akram, A.; Ullah, N. Additional investigation of the Biswas–Arshed equation to reveal optical soliton dynamics in birefringent fiber. Opt. Quantum Electron. 2024, 56, 705. [Google Scholar] [CrossRef]
- Feng, G.; Jiang, W.; Liu, J.; Zhang, Q.; Wu, Q.; Miao, L. A novel green nonaqueous sol-gel process for preparation of partially stabilized zirconia nanopowder. Process. Appl. Ceram. 2017, 11, 220–224. [Google Scholar] [CrossRef]
- Lin, Y.; Li, X.; Huang, L.; Xie, X.; Luo, T.; Tian, G. Acupuncture combined with Chinese herbal medicine for discogenic low back pain: Protocol for a multicentre, randomised controlled trial. BMJ Open 2024, 14, e088898. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Ji, C.; Yang, H. The forest ecological footprint distribution of Chinese log imports. For. Policy Econ. 2010, 12, 231–235. [Google Scholar] [CrossRef]
- Feng, G.; Jiang, F.; Jiang, W.; Liu, J.; Zhang, Q.; Wu, Q.; Miao, L. Novel facile nonaqueous precipitation in-situ synthesis of mullite whisker skeleton porous materials. Ceram. Int. 2018, 44, 22904–22910. [Google Scholar] [CrossRef]
- Jiang, W.H.; Hu, Z.; Liu, J.M. Study on low-tanperature synthesis of iron-stabilized aluminium titanate via non-hydrolytic sol-gel method. J. Syn. Cryst. 2011, 40, 465–469. [Google Scholar]
- Fang, Q.; Sun, Q.; Ge, J.; Wang, H.; Qi, J. Multidimensional Engineering of Nanoconfined Catalysis: Frontiers in Carbon-Based Energy Conversion and Utilization. Catalysts 2025, 15, 477. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, J.; Yang, Q.; Zhou, L. Rational construction of a fluorescent sensor for simultaneous detection and imaging of hypochlorous acid and peroxynitrite in living cells, tissues and inflammatory rat models. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121691. [Google Scholar] [CrossRef]
- Liu, W.; Gao, Z.; Wei, Z.; Zhang, L.; Guo, G.; Mumtaz, S. Compensator-Based Fixed-Time Prescribed Performance Control of Vehicular Platoon With Input Nonlinearities: A Performance Boundary Self-Adjusting Approach. IEEE Trans. Intell. Transp. Syst. 2025. [Google Scholar] [CrossRef]
- Ni, Z.; Ma, J.; Nazarov, A.A.; Yuan, Z.; Wang, X.; Ao, S.; Qin, J. Improving the weldability and mechanical property of ultrasonic spot welding of Cu sheets through a surface gradient structure. J. Mater. Res. Technol. 2025, 36, 2652–2668. [Google Scholar] [CrossRef]
- Sha, X.; Si, X.; Zhu, Y.; Wang, S.; Zhao, Y. Automatic three-dimensional reconstruction of transparent objects with multiple optimization strategies under limited constraints. Image Vis. Comput. 2025, 160, 105580. [Google Scholar] [CrossRef]
- Yu, Z.; Ning, Z.; Chang, W.Y.; Chang, S.J.; Yang, H. Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences. For. Policy Econ. 2023, 151, 102957. [Google Scholar] [CrossRef]
- Feng, M.; Yan, C.; Wu, Z.; Dong, W.; Wang, Y.; Mian, A. Hyperrectangle embedding for debiased 3D scene graph prediction from RGB sequences. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 6410–6426. [Google Scholar] [CrossRef]
- He, C.H.; Liu, C. A modified frequency–amplitude formulation for fractal vibration systems. Fractals 2022, 30, 2250046. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Wang, J.; Hu, Y.H.; Sun, Q.S.; Geng, R.; Ding, L.N. Antimicrobial peptides: Classification, mechanism, and application in plant disease resistance. Probiotics Antimicrob. Proteins 2025, 17, 1432–1446. [Google Scholar] [CrossRef]
- Zeng, M.; Yang, S.; Meng, L.; Jia, S.; Zhou, L.; Lao, X.; Zhou, Y. Developing a de novo designed broth to rapidly recover lactic acid-injured Escherichia coli to ensure almost no multiplication during repair for precise enumeration. Food Control 2023, 153, 109937. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, Y.; Tan, L.; Xie, C.; Luo, K.; Li, X.; Zhou, L. Rationally constructed de novo fluorescent nanosensor for nitric oxide detection and imaging in living cells and inflammatory mice models. Anal. Chem. 2023, 95, 2452–2459. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Zhao, X.W.; Zhang, H.H. Out-of-core solver based DDM for solving large airborne array. Appl. Comput. Electromagn. Soc. J. (ACES) 2016, 31, 509–515. [Google Scholar]
- Zhang, D.; Li, B.; Wei, Y.; Zhang, H.; Lu, G.; Fan, L.; Xu, J. Investigation of injection and flow characteristics in an electronic injector featuring a novel control valve. Energy Convers. Manag. 2025, 327, 119609. [Google Scholar] [CrossRef]
- Zhang, H.H.; Fan, Z.H.; Chen, R.S. Marching-on-in-degree solver of time-domain finite element-boundary integral method for transient electromagnetic analysis. IEEE Trans. Antennas Propag. 2013, 62, 319–326. [Google Scholar] [CrossRef]
- Qiu, S.; Qiu, T.; Yan, H.; Long, Q.; Wu, H.; Li, X.; Zhu, D. Investigation of protonation and deprotonation processes of kaolinite and its effect on the adsorption stability of rare earth elements. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128596. [Google Scholar] [CrossRef]
- Yan, H.; Liang, T.; Liu, Q.; Qiu, T.; Ai, G. Compound leaching behavior and regularity of ionic rare earth ore. Powder Technol. 2018, 333, 106–114. [Google Scholar] [CrossRef]
- Yin, X.; Lai, Y.; Zhang, X.; Zhang, T.; Tian, J.; Du, Y.; Gao, J. Targeted sonodynamic therapy platform for holistic integrative Helicobacter pylori therapy. Adv. Sci. 2025, 12, 2408583. [Google Scholar] [CrossRef] [PubMed]
- Yali, D.O.N.G. High-temperature deformatiason measurement using optical imaging digital image correlation: Status, challenge and future. Chin. J. Aeronaut. 2025, 38, 103472. [Google Scholar]
- Guan, Y.; Cui, Z.; Zhou, W. Reconstruction in off-axis digital holography based on hybrid clustering and the fractional Fourier transform. Opt. Laser Technol. 2025, 186, 112622. [Google Scholar] [CrossRef]
- Zhang, H.H.; Chao, J.B.; Wang, Y.W.; Liu, Y.; Xu, Y.X.; Yao, H.; Li, X.H. Electromagnetic–thermal co-design of base station antennas with all-metal EBG structures. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 3008–3012. [Google Scholar] [CrossRef]
- Zhou, Y.; Bu, L.; Guo, M.; Zhou, C.; Wang, Y.; Chen, L.; Liu, J. Comprehensive genomic characterization of Campylobacter genus reveals some underlying mechanisms for its genomic diversification. PLoS ONE 2013, 8, e70241. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, Z.; Chen, R. Fast wideband scattering analysis based on Taylor expansion and higher-order hierarchical vector basis functions. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 579–582. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, L.; Peng, L.; Yuan, G.; Ding, H.; Tan, L.; Zhou, Y. A smart mitochondria-targeting TP-NIR fluorescent probe for the selective and sensitive sensing of H 2 S in living cells and mice. New J. Chem. 2021, 45, 7315–7320. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Li, X.; Eskandari, Z.; He, Q. Bifurcation analysis and complex dynamics of a Kopel triopoly model. J. Comput. Appl. Math. 2023, 426, 115089. [Google Scholar] [CrossRef]
- Zhu, X.; Xia, P.; He, Q.; Ni, Z.; Ni, L. Ensemble Classifier Design Based on Perturbation Binary Salp Swarm Algorithm for Classification. CMES-Comput. Model. Eng. Sci. 2023, 135, 653. [Google Scholar] [CrossRef]
- Li, B.; Liang, H.; He, Q. Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model. Chaos Solitons Fractals 2021, 146, 110856. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, X.; He, Q. Multi-scale systemic risk and spillover networks of commodity markets in the bullish and bearish regimes. N. Am. J. Econ. Financ. 2022, 62, 101766. [Google Scholar] [CrossRef]
- Feng, G.; Xie, W.; Zheng, E.; Jiang, F.; Yang, Q.; Jin, W.; Huang, Y. Nonaqueous precipitation combined with intermolecular polycondensation synthesis of novel HAp porous skeleton material and its Pb2+ ions removal performance. Ceram. Int. 2024, 50, 19757–19768. [Google Scholar] [CrossRef]
Current Research | Chen et al. [9] Work |
---|---|
Unified solver method and the method. | Sine-Gordon expansion method. |
Investigates chaos analysis using 2D phase portraits, time-series analysis, and Lyapunov exponents. | No chaos analysis performed. |
Addresses soliton dynamics and chaos theory. | Focuses mainly on soliton solutions without examining dynamical behavior. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasin, S.; Alshammari, F.S.; Khan, A.; Beenish. Quasi-Periodic Dynamics and Wave Solutions of the Ivancevic Option Pricing Model Using Multi-Solution Techniques. Symmetry 2025, 17, 1137. https://doi.org/10.3390/sym17071137
Yasin S, Alshammari FS, Khan A, Beenish. Quasi-Periodic Dynamics and Wave Solutions of the Ivancevic Option Pricing Model Using Multi-Solution Techniques. Symmetry. 2025; 17(7):1137. https://doi.org/10.3390/sym17071137
Chicago/Turabian StyleYasin, Sadia, Fehaid Salem Alshammari, Asif Khan, and Beenish. 2025. "Quasi-Periodic Dynamics and Wave Solutions of the Ivancevic Option Pricing Model Using Multi-Solution Techniques" Symmetry 17, no. 7: 1137. https://doi.org/10.3390/sym17071137
APA StyleYasin, S., Alshammari, F. S., Khan, A., & Beenish. (2025). Quasi-Periodic Dynamics and Wave Solutions of the Ivancevic Option Pricing Model Using Multi-Solution Techniques. Symmetry, 17(7), 1137. https://doi.org/10.3390/sym17071137