Electroexcitation of Nucleon Resonances and Emergence of Hadron Mass
Abstract
1. Introduction
2. EHM Basics
3. Nucleon Resonance Electroexcitation Data from the JLab 6 GeV Era
3.1. Extraction of Electrocouplings from Exclusive Electroproduction Data
3.2. Current Status of Electrocoupling Results
4. Insight into EHM from Studies of Structure
4.1. Dressed Quark Running Mass and Its Connection to Structure
4.2. Dressed Quark Mass Function Insights from Electrocouplings of 6 GeV Era at JLab
- Three invariant mass distributions for the three pairs of final state hadrons;
- Three CM distributions over polar -angles for the final state , , and p;
- Three distributions over the -angles between the two planes A and B defined by (A) the three-momentum vectors of a pair of final state hadrons and (B) of the third final hadron and the initial state photon in the CM frame, as described in ref. [14].
5. Extending Insight into EHM from CLAS12 Experiments and Beyond
6. EHM from Combined Studies of Meson and Baryon Structures
- A unified framework for the emergence of meson and baryon mass and structure: Assess the feasibility of understanding EHM for both mesons and baryons in relation to the QCD Lagrangian.
- Small masses of pseudoscalar mesons: Explain the small masses of pseudoscalar mesons in connection with their dual nature as bound systems and as Goldstone bosons.
- Understanding DCSB: Extend insights into DCSB through studies of the dressed quark mass function in pions, kaons, and nucleon ground and excited states.
- Interplay between Higgs-generated and emergent parts of hadron mass and structure: Elucidate the interplay between the Higgs and emergent mechanisms in hadron mass generation and interactions.
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CEBAF | Continuous Electron Beam Accelerator Facility at Jefferson Lab |
CERN | European Organization for Nuclear Research |
CLAS | CEBAF Large Acceptance Spectrometer |
CLAS12 | CEBAF Large Acceptance Spectrometer for use at 12 GeV |
CM | Center-of-mass frame |
CSM(s) | Continuum Schwinger function method(s) |
DCSB | Dynamical chiral symmetry breaking |
d.p. | Data point |
EHM | Emergence of hadron mass |
EIcC | Electron Ion Collider in China |
EIC | Electron Ion Collider at Brookhaven National Laboratory |
EMT | Energy–Momentum Tensor |
HB | Higgs boson |
JLab | Thomas Jefferson National Accelerator Facility—Jefferson Laboratory |
JM | JLab–Moscow data-driven reaction model |
lQCD | Lattice Quantum Chromodynamics |
PDG | Particle Data Group |
PI (charge) | Process-independent (charge) |
pQCD | Perturbative Quantum Chromodynamics |
QCD | Quantum chromodynamics |
QED | Quantum electrodynamics |
QFT | Quantum field theory |
RGI | Renormalization group-invariant |
RL | Rainbow ladder |
SAID | Partial Wave Analysis Facility at George Washington University |
SBS | Super Bigbite Spectrometer at Jefferson Lab |
SCI | Symmetry-preserving contact interaction |
SM | Standard Model of nuclear and particle physics |
SPM | Schlessinger Point Method |
sQCD | Strongly coupled QCD |
References
- Leader, E.; Predazzi, E. An Introduction to Gauge Theories and Modern Particle Physics. Vol. 2: CP Violation, QCD and Hard Processes; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields. Vol. 2: Modern Applications; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Fritzsch, H.; Gell-Mann, M. Current Algebra: Quarks and what else? eConf 1972, C720906V2, 135–165. [Google Scholar]
- Roberts, C.D. Three Lectures on Hadron Physics. J. Phys. Conf. Ser. 2016, 706, 022003. [Google Scholar] [CrossRef]
- Horn, T.; Roberts, C.D. The Pion: An Enigma within the Standard Model. J. Phys. G 2016, 43, 073001. [Google Scholar] [CrossRef]
- Roberts, C.D.; Richards, D.G.; Horn, T.; Chang, L. Insights into the Emergence of Mass from Studies of Pion and Kaon Structure. Prog. Part. Nucl. Phys. 2021, 120, 103883. [Google Scholar] [CrossRef]
- Binosi, D. Emergent Hadron Mass in Strong Dynamics. Few Body Syst. 2022, 63, 42. [Google Scholar] [CrossRef]
- Ding, M.; Roberts, C.D.; Schmidt, S.M. Emergence of Hadron Mass and Structure. Particles 2023, 6, 57–120. [Google Scholar] [CrossRef]
- Carman, D.S.; Gothe, R.W.; Mokeev, V.I.; Roberts, C.D. Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass. Particles 2023, 6, 416–439. [Google Scholar] [CrossRef]
- Ferreira, M.N.; Papavassiliou, J. Gauge Sector Dynamics in QCD. Particles 2023, 6, 312–363. [Google Scholar] [CrossRef]
- Raya, K.; Bashir, A.; Binosi, D.; Roberts, C.D.; Rodríguez-Quintero, J. Pseudoscalar Mesons and Emergent Mass. Few Body Syst. 2024, 65, 60. [Google Scholar] [CrossRef]
- Dyson, F.J. Divergence of Perturbation Theory in Quantum Electrodynamics. Phys. Rev. 1952, 85, 631–632. [Google Scholar] [CrossRef]
- Mokeev, V.I.; Carman, D.S. Photo- and Electrocouplings of Nucleon Resonances. Few Body Syst. 2022, 63, 59. [Google Scholar] [CrossRef]
- Mokeev, V.I.; Achenbach, P.; Burkert, V.D.; Carman, D.S.; Gothe, R.W.; Hiller Blin, A.N.; Isupov, E.L.; Joo, K.; Neupane, K.; Trivedi, A. First Results on Nucleon Resonance Electroexcitation Amplitudes from ep → e′π+π−p′ Cross Sections at W = 1.4–1.7 GeV and Q2 = 2.0 –5.0 GeV2. Phys. Rev. C 2023, 108, 025204. [Google Scholar] [CrossRef]
- Burkert, V.D. 50 Years of Quantum Chromodynamics. Eur. Phys. J. C 2023, 83, 1125. [Google Scholar] [CrossRef]
- Aznauryan, I.G.; Burkert, V.D. Electroexcitation of Nucleon Resonances. Prog. Part. Nucl. Phys. 2012, 67, 1–54. [Google Scholar] [CrossRef]
- Carman, D.S.; CLAS Collaboration. Nucleon Resonance Structure Studies Via Exclusive KY Electroproduction. Few Body Syst. 2016, 57, 941–948. [Google Scholar] [CrossRef]
- Mart, T. Electromagnetic Production of KΣ on the Nucleon Near Threshold. Phys. Rev. C 2014, 90, 065202. [Google Scholar] [CrossRef]
- Sparveris, N.; Stave, S.; Achenbach, P.; Gayoso, C.A.; Baumann, D.; Bernauer, J.; Bernstein, A.M.; Böhm, R.; Bosnar, D.; Botto, T.; et al. Measurements of the γ*p → Δ Reaction at low Q2. Eur. Phys. J. A 2013, 49, 136. [Google Scholar] [CrossRef]
- A1 Collaboration; Achenbach, P.; Gayoso, C.A.; Böhm, R.; Borodina, O.; Bosnar, D.; Bozkurt, V.; Bydžovský, P.; Debenjak, L.; Distler, M.O.; et al. Beam Helicity Asymmetries in K+Λ Electroproduction off the Proton at low Q2. Eur. Phys. J. A 2017, 53, 198. [Google Scholar] [CrossRef]
- Blomberg, A.; Atac, H.; Sparveris, N.; Paolone, M.; Achenbach, P.; Benali, M.; Beričič, J.; Böhm, R.; Correa, L.; Distler, M.O.; et al. Virtual Compton Scattering Measurements in the Nucleon Resonance Region. Eur. Phys. J. A 2019, 55, 182. [Google Scholar] [CrossRef]
- Kunz, C.; Kaloskamis, N.; Distler, M.; Zhou, Z.-L.; Alarcon, R.; Barkhuff, D.; Bernstein, A.; Bertozzi, W.; Calarco, J.; Casagrande, F.; et al. Measurement of the Transverse Longitudinal Cross Sections in the p(,e′p)π0 Reaction in the Δ Region. Phys. Lett. B 2003, 564, 21–26. [Google Scholar] [CrossRef]
- Mecking, B.A.; Adams, G.; Ahmad, S.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Auger, T.; Avakian, H.; et al. The CEBAF Large Acceptance Spectrometer (CLAS). Nucl. Instrum. Meth. A 2003, 503, 513–553. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Burkert, V.D.; Carman, D.S.; Chen, J.P.; Cui, Z.-F.; Döring, M.; Dosch, H.G.; Draayer, J.; Elouadrhiri, L.; Glazier, D.I.; et al. Strong QCD from Hadron Structure Experiments: Newport News, VA, USA, November 4–8, 2019. Int. J. Mod. Phys. E 2020, 29, 2030006. [Google Scholar] [CrossRef]
- Burkert, V.D.; Roberts, C.D. Colloquium: Roper Resonance: Toward a Solution to the Fifty Year Puzzle. Rev. Mod. Phys. 2019, 91, 011003. [Google Scholar] [CrossRef]
- Burkert, V.D.; Elouadrhiri, L.; Adhikari, K.; Adhikari, S.; Amaryan, M.; Anderson, D.; Angelini, G.; Antonioli, M.; Atac, H.; Aune, S.; et al. The CLAS12 Spectrometer at Jefferson Laboratory. Nucl. Instrum. Meth. A 2020, 959, 163419. [Google Scholar] [CrossRef]
- Accardi, A.; Achenbach, P.; Adhikari, D.; Afanasev, A.; Akondi, C.S.; Akopov, N.; Albaladejo, M.; Albataineh, H.; Albrecht, M.; Almeida-Zamora, B.; et al. Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab. Eur. Phys. J. A 2024, 60, 173. [Google Scholar] [CrossRef]
- Roberts, C.D. Origin of the Proton Mass. EPJ Web Conf. 2023, 282, 01006. [Google Scholar] [CrossRef]
- Roberts, C.D.; Williams, A.G. Dyson-Schwinger Equations and their Application to Hadronic Physics. Prog. Part. Nucl. Phys. 1994, 33, 477–575. [Google Scholar] [CrossRef]
- Politzer, H.D. The Dilemma of Attribution. Proc. Nat. Acad. Sci. USA 2005, 102, 7789–7793. [Google Scholar] [CrossRef]
- Wilczek, F. Asymptotic freedom: From Paradox to Paradigm. Proc. Nat. Acad. Sci. USA 2005, 102, 8403–8413. [Google Scholar] [CrossRef]
- Gross, D.J. The Discovery of Asymptotic Freedom and the Emergence of QCD. Proc. Nat. Acad. Sci. USA 2005, 102, 9099–9108. [Google Scholar] [CrossRef]
- Maris, P.; Roberts, C.D. π- and K-Meson Bethe–Salpeter amplitudes. Phys. Rev. C 1997, 56, 3369–3383. [Google Scholar] [CrossRef]
- Pascual, P.; Tarrach, R. QCD: Renormalization for the Practitioner; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1984; Volume 194. [Google Scholar]
- Roberts, C.D. Perspective on the Origin of Hadron Masses. Few Body Syst. 2017, 58, 5. [Google Scholar] [CrossRef]
- Burkert, V.D.; Elouadrhiri, L.; Girod, F.X.; Lorcé, C.; Schweitzer, P.; Shanahan, P.E. Colloquium: Gravitational Form Factors of the Proton. Rev. Mod. Phys. 2023, 95, 041002. [Google Scholar] [CrossRef]
- Achenbach, P.; Adhikari, D.; Afanasev, A.; Afzal, F.; Aidala, C.; Al-Bataineh, A.; Almaalol, D.; Amaryan, M.; Androić, D.; Armstrong, W.; et al. The Present and Future of QCD. Nucl. Phys. A 2024, 1047, 122874. [Google Scholar] [CrossRef]
- Du, M.L.; Baru, V.; Guo, F.K.; Hanhart, C.; Meißner, U.G.; Nefediev, A.; Strakovsky, I. Deciphering the Mechanism of Near-Threshold J/ψ Photoproduction. Eur. Phys. J. C 2020, 80, 1053. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Chen, S.; Yao, Z.Q.; Binosi, D.; Cui, Z.F.; Roberts, C.D. Vector-Meson Production and Vector Meson Dominance. Eur. Phys. J. C 2021, 81, 895. [Google Scholar] [CrossRef]
- Sun, P.; Tong, X.B.; Yuan, F. Near Threshold Heavy Quarkonium Photoproduction at Large Momentum Transfer. Phys. Rev. D 2022, 105, 054032. [Google Scholar] [CrossRef]
- Winney, D.; Fernández-Ramírez, C.; Pilloni, A.; Hiller Blin, A.N.; Albaladejo, M.; Bibrzycki, Ł.; Hammoud, N.; Liao, J.; Mathieu, V.; Montaña, G.; et al. Dynamics in Near-Threshold J/ψ Photoproduction. Phys. Rev. D 2023, 108, 054018. [Google Scholar] [CrossRef]
- Tang, L.; Yang, Y.X.; Cui, Z.F.; Roberts, C.D. J/ψ Photoproduction: Threshold to Very High Energy. Phys. Lett. B 2024, 856, 138904. [Google Scholar] [CrossRef]
- Sakinah, S.; Lee, T.S.H.; Choi, H.M. Dynamical Model of J/ψ Photoproduction on the Nucleon. Phys. Rev. C 2024, 109, 065204. [Google Scholar] [CrossRef]
- Higgs, P.W. Nobel Lecture: Evading the Goldstone theorem. Rev. Mod. Phys. 2014, 86, 851. [Google Scholar] [CrossRef]
- Englert, F. Nobel Lecture: The BEH Mechanism and its Scalar Boson. Rev. Mod. Phys. 2014, 86, 843. [Google Scholar] [CrossRef]
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdelalim, A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; et al. Observation of a new Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Navas, S.; Amsler, C.; Gutsche, T.; Hanhart, C.; Hernández-Rey, J.J.; Lourenço, C.; Masoni, A.; Mikhasenko, M.; Mitchell, R.E.; Patrignani, C.; et al. Review of Particle Physics. Phys. Rev. D 2024, 110, 030001. [Google Scholar] [CrossRef]
- Cui, Z.F.; Zhang, J.L.; Binosi, D.; de Soto, F.; Mezrag, C.; Papavassiliou, J.; Roberts, C.D.; Rodríguez-Quintero, J.; Segovia, J.; Zafeiropoulos, S. Effective Charge from Lattice QCD. Chin. Phys. C 2020, 44, 083102. [Google Scholar]
- Schwinger, J.S. Gauge Invariance and Mass. Phys. Rev. 1962, 125, 397–398. [Google Scholar] [CrossRef]
- Schwinger, J.S. Gauge Invariance and Mass. 2. Phys. Rev. 1962, 128, 2425–2429. [Google Scholar] [CrossRef]
- Cornwall, J.M. Dynamical Mass Generation in Continuum QCD. Phys. Rev. D 1982, 26, 1453. [Google Scholar] [CrossRef]
- Eichmann, G.; Sanchis-Alepuz, H.; Williams, R.; Alkofer, R.; Fischer, C.S. Baryons as Relativistic Three-Quark Bound States. Prog. Part. Nucl. Phys. 2016, 91, 1–100. [Google Scholar] [CrossRef]
- Qin, S.X.; Roberts, C.D.; Schmidt, S.M. Spectrum of Light- and Heavy-Baryons. Few Body Syst. 2019, 60, 26. [Google Scholar] [CrossRef]
- Yao, Z.Q.; Binosi, D.; Cui, Z.F.; Roberts, C.D. Nucleon Charge and Magnetisation Distributions: Flavour Separation and Zeroes. Fund. Res. 2025, in press. [Google Scholar] [CrossRef]
- Roberts, C.D. On Mass and Matter. AAPPS Bull. 2021, 31, 6. [Google Scholar]
- Roberts, C.D. Empirical Consequences of Emergent Mass. Symmetry 2020, 12, 1468. [Google Scholar] [CrossRef]
- Deur, A.; Burkert, V.; Chen, J.P.; Korsch, W. Experimental Determination of the QCD Effective Charge αg1(Q). Particles 2022, 5, 171–179. [Google Scholar] [CrossRef]
- Deur, A.; Brodsky, S.J.; Roberts, C.D. QCD Running Couplings and Effective Charges. Prog. Part. Nucl. Phys. 2024, 134, 104081. [Google Scholar] [CrossRef]
- Binosi, D.; Mezrag, C.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J. Process-Independent Strong Running Coupling. Phys. Rev. D 2017, 96, 054026. [Google Scholar] [CrossRef]
- Pilaftsis, A. Generalized Pinch Technique and the Background Field Method in General Gauges. Nucl. Phys. B 1997, 487, 467–491. [Google Scholar] [CrossRef]
- Binosi, D.; Papavassiliou, J. Pinch Technique: Theory and Applications. Phys. Rep. 2009, 479, 1–152. [Google Scholar] [CrossRef]
- Cornwall, J.M.; Papavassiliou, J.; Binosi, D. The Pinch Technique and Its Applications to Non-Abelian Gauge Theories; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Abbott, L.F. Introduction to the Background Field Method. Acta Phys. Pol. B 1982, 13, 33. [Google Scholar]
- Gell-Mann, M.; Low, F.E. Quantum Electrodynamics at Small Distances. Phys. Rev. 1954, 95, 1300–1312. [Google Scholar] [CrossRef]
- Blum, T.; Boyle, P.A.; Christ, N.H.; Frison, J.; Garron, N.; Hudspith, R.J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; et al. Domain Wall QCD with Physical Quark Masses. Phys. Rev. D 2016, 93, 074505. [Google Scholar] [CrossRef]
- Boyle, P.A.; Christ, N.H.; Garron, N.; Jung, C.; Jüttner, A.; Kelly, C.; Mawhinney, R.D.; McGlynn, G.; Murphy, D.J.; Ohta, S.; et al. Low Energy Constants of SU(2) Partially Quenched Chiral Perturbation Theory from Nf=2+1 Domain Wall QCD. Phys. Rev. D 2016, 93, 054502. [Google Scholar] [CrossRef]
- Boyle, P.A.; Del Debbio, L.; Jüttner, A.; Khamseh, A.; Sanfilippo, F.; Tsang, J.T. The Decay Constants fD and fDs in the Continuum Limit of Nf = 2 + 1 Domain Wall Lattice QCD. JHEP 2017, 12, 008. [Google Scholar] [CrossRef]
- Gao, F.; Qin, S.X.; Roberts, C.D.; Rodriguez-Quintero, J. Locating the Gribov Horizon. Phys. Rev. D 2018, 97, 034010. [Google Scholar] [CrossRef]
- Cui, Z.F.; Ding, M.; Gao, F.; Raya, K.; Binosi, D.; Chang, L.; Roberts, C.D.; Rodríguez-Quintero, J.; Schmidt, S.M. Kaon and Pion Parton Distributions. Eur. Phys. J. C 2020, 80, 1064. [Google Scholar] [CrossRef]
- Yao, Z.Q.; Xu, Y.Z.; Binosi, D.; Cui, Z.F.; Ding, M.; Raya, K.; Roberts, C.D.; Rodríguez-Quintero, J.; Schmidt, S.M. Nucleon Gravitational Form Factors. arXiv 2025, arXiv:2409.15547. [Google Scholar]
- Xu, Z.N.; Binosi, D.; Chen, C.; Raya, K.; Roberts, C.D.; Rodríguez-Quintero, J. Kaon Distribution Functions from Empirical Information. Phys. Lett. B 2025, 865, 139451. [Google Scholar] [CrossRef]
- Bjorken, J.D. Applications of the Chiral U(6) × U(6) Algebra of Current Densities. Phys. Rev. 1966, 148, 1467–1478. [Google Scholar] [CrossRef]
- Bjorken, J.D. Inelastic Scattering of Polarized Leptons from Polarized Nucleons. Phys. Rev. D 1970, 1, 1376–1379. [Google Scholar] [CrossRef]
- Dokshitzer, Y.L. Perturbative QCD theory (includes our knowledge of αs). In Proceedings of the 29th International Conference on High-Energy Physics, Vancouver, BC, Canada, 23–29 July 1998; pp. 305–324. [Google Scholar]
- Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D. Natural Constraints on the Gluon-Quark Vertex. Phys. Rev. D 2017, 95, 031501. [Google Scholar] [CrossRef]
- Bowman, P.O.; Heller, U.M.; Leinweber, D.B.; Parappilly, M.B.; Williams, A.G.; Zhang, J. Unquenched Quark Propagator in Landau Gauge. Phys. Rev. D 2005, 71, 054507. [Google Scholar] [CrossRef]
- Virgili, A.; Kamleh, W.; Leinweber, D.B. Overlap Quark Propagator Near the Physical Pion Mass. Phys. Lett. B 2023, 840, 137865. [Google Scholar] [CrossRef]
- Mokeev, V.I.; Carman, D.S. Insight into Emergence of Hadron Mass from N∗ Electroexcitation Amplitudes. Nuovo Cim. C 2024, 47, 216. [Google Scholar] [CrossRef]
- Obukhovsky, I.T.; Faessler, A.; Fedorov, D.K.; Gutsche, T.; Lyubovitskij, V.E. Transition Form Factors and Helicity Amplitudes for Electroexcitation of Negative and Positive Parity Nucleon Resonances in a Light-Front Quark Model. Phys. Rev. D 2019, 100, 094013. [Google Scholar]
- CLAS Physics Database. Available online: https://clasweb.jlab.org/physicsdb/ (accessed on 1 July 2025).
- Chesnokov, V.V.; Golubenko, A.A.; Ishkhanov, B.S.; Mokeev, V.I. CLAS Database for Studies of the Structure of Hadrons in Electromagnetic Processes. Phys. Part. Nucl. 2022, 53, 184–190. [Google Scholar] [CrossRef]
- Data Analysis Center, Institute for Nuclear Studies, George Washington University. Available online: http://gwdac.phys.gwu.edu/ (accessed on 1 July 2025).
- Smith, L.C. Exploring the γ* p → Δ(1232) Transition at Low Q2 Using CLAS. AIP Conf. Proc. 2007, 904, 222–231. [Google Scholar] [CrossRef]
- Egiyan, H.; Aznauryan, I.G.; Burkert, V.D.; Griffioen, K.A.; Joo, K.; Minehart, R.; Smith, L.C.; Adams, G.; Ambrozewicz, P.; Anciant, E.; et al. Single π+ Electroproduction on the Proton in the First and Second Resonance Regions at 0.25 GeV2 < Q2 < 0.65 GeV2 Using CLAS. Phys. Rev. C 2006, 73, 025204. [Google Scholar] [CrossRef]
- Park, K.; Burkert, V.D.; Kim, W.; Aznauryan, I.G.; Minehart, R.; Smith, L.C.; Joo, K.; Elouadrhiri, L.; Adams, G.; Amaryan, M.J.; et al. Cross Sections and Beam Asymmetries for p → enπ+ in the Nucleon Resonance Region for 1.7 < Q2 < 4.5 GeV2. Phys. Rev. C 2008, 77, 015208. [Google Scholar] [CrossRef]
- Joo, K.; Smith, L.C.; Aznauryan, I.G.; Burkert, V.D.; Minehart, R.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; et al. Measurement of the Polarized Structure Function σLT′ for p(,e′π+)n in the Δ(1232) Resonance Region. Phys. Rev. C 2004, 70, 042201. [Google Scholar] [CrossRef]
- Park, K.; Aznauryan, I.G.; Burkert, V.D.; Adhikari, K.P.; Amaryan, M.J.; Pereira, S.A.; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; et al. Measurements of ep → e′π+n at W = 1.6–2.0 GeV and Extraction of Nucleon Resonance Electrocouplings at CLAS. Phys. Rev. C 2015, 91, 045203. [Google Scholar] [CrossRef]
- Joo, K.; Smith, L.C.; Burkert, V.D.; Minehart, R.; Aznauryan, I.G.; Elouadrhiri, L.; Stepanyan, S.; Adams, G.S.; Amaryan, M.J.; Anciant, E.; et al. Q2 Dependence of Quadrupole Strength in the γ∗p → Δ+(1232) → pπ0 Transition. Phys. Rev. Lett. 2002, 88, 122001. [Google Scholar] [CrossRef] [PubMed]
- Joo, K.; Smith, L.C.; Burkert, V.D.; Minehart, R.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; et al. Measurement of the Polarized Structure Function σLT′ for p(,e′p)π0 in the Δ(1232) Resonance Region. Phys. Rev. C 2003, 68, 032201. [Google Scholar] [CrossRef]
- Biselli, A.S.; Burkert, V.D.; Amaryan, M.J.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J.P.; Baltzell, N.A.; Battaglieri, M.; et al. First Measurement of Target and Double Spin Asymmetries for → epπ0 in the Nucleon Resonance Region Above the Δ(1232). Phys. Rev. C 2008, 78, 045204. [Google Scholar] [CrossRef]
- Markov, N.; Joo, K.; Burkert, V.D.; Mokeev, V.I.; Smith, L.C.; Ungaro, M.; Adhikari, S.; Amaryan, M.J.; Angelini, G.; Atac, H.; et al. Exclusive π0p Electroproduction off Protons in the Resonance Region at Photon Virtualities 0.4 GeV2 ≤ Q2 ≤ 1 GeV2. Phys. Rev. C 2020, 101, 015208. [Google Scholar] [CrossRef]
- Isupov, E.L.; Burkert, V.D.; Golubenko, A.A.; Joo, K.; Markov, N.S.; Mokeev, V.I.; Smith, L.C.; Armstrong, W.R.; Atac, H.; Avakian, H.; et al. Polarized Structure Function σLT′ from π0p Electroproduction Data in the Resonance Region at 0.4 GeV2 < Q2 < 1.0 GeV2. Phys. Rev. C 2022, 105, L022201. [Google Scholar] [CrossRef]
- Denizli, H.; Mueller, J.; Dytman, S.; Leber, M.L.; Levine, R.D.; Miles, J.; Kim, K.Y.; Adams, G.; Amaryan, M.J.; Ambrozewicz, P.; et al. Q2 Dependence of the S11(1535) Photocoupling and Evidence for a P-wave Resonance in η electroproduction. Phys. Rev. C 2007, 76, 015204. [Google Scholar] [CrossRef]
- Villano, A.N.; Stoler, P.; Bosted, P.E.; Connell, S.H.; Dalton, M.M.; Jones, M.K.; Kubarovsky, V.; Adams, G.S.; Ahmidouch, A.; Arrington, J.; et al. Neutral Pion Electroproduction in the Resonance Region at High Q2. Phys. Rev. C 2009, 80, 035203. [Google Scholar] [CrossRef]
- Frolov, V.V.; Adams, G.S.; Ahmidouch, A.; Armstrong, C.S.; Assamagan, K.; Avery, S.; Baker, O.K.; Bosted, P.; Burkert, V.; Carlini, R.; et al. Electroproduction of the Δ(1232) Resonance at High Momentum Transfer. Phys. Rev. Lett. 1999, 82, 45–48. [Google Scholar] [CrossRef]
- Ambrozewicz, P.; Carman, D.S.; Feuerbach, R.J.; Mestayer, M.D.; Raue, B.A.; Schumacher, R.A.; Tkabladze, A.; Amarian, M.J.; Anghinolfi, M.; Asavapibhop, B.; et al. Separated Structure Functions for the Exclusive Electroproduction of K+Λ and K+Σ0 Final States. Phys. Rev. C 2007, 75, 045203. [Google Scholar] [CrossRef]
- Carman, D.S.; Park, K.; Raue, B.A.; Adhikari, K.P.; Adikaram, D.; Aghasyan, M.; Amaryan, M.J.; Anderson, M.D.; Pereira, S.A.; Anghinolfi, M.; et al. Separated Structure Functions for Exclusive K+Λ and K+Σ0 Electroproduction at 5.5 GeV with CLAS. Phys. Rev. C 2013, 87, 025204. [Google Scholar] [CrossRef]
- Nasseripour, R.; Raue, B.A.; Carman, D.S.; Ambrozewicz, P.; Amaryan, M.J.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; et al. Polarized Structure Function σLT′ for p(,e′K+)Λ in the Nucleon Resonance Region. Phys. Rev. C 2008, 77, 065208. [Google Scholar] [CrossRef]
- Gabrielyan, M.; Raue, B.A.; Carman, D.S.; Park, K.; Adhikari, K.P.; Adikaram, D.; Amaryan, M.J.; Pereira, S.A.; Avakian, H.; Ball, J.; et al. Induced Polarization of Λ(1116) in Kaon Electroproduction. Phys. Rev. C 2014, 90, 035202. [Google Scholar] [CrossRef]
- Carman, D.S.; D’ANgelo, A.; Lanza, L.; Mokeev, V.I.; Adhikari, K.P.; Amaryan, M.J.; Armstrong, W.R.; Atac, H.; Avakian, H.; Gayoso, C.A.; et al. Beam-Recoil Transferred Polarization in K+Y Electroproduction in the Nucleon Resonance Region with CLAS12. Phys. Rev. C 2022, 105, 065201. [Google Scholar] [CrossRef]
- Carman, D.S.; D’Angelo, A.; Lanza, L.; Mokeev, V.I.; Achenbach, P.; Alvarado, J.S.; Amaryan, M.J.; Atac, H.; Avakian, H.; Baltzell, N.A.; et al. Recoil Polarization in K+Y Electroproduction in the Nucleon Resonance Region with CLAS12. arXiv 2025, arXiv:2505.12030. [Google Scholar]
- Fedotov, G.V.; Mokeev, V.I.; Burkert, V.D.; Elouadrhiri, L.; Golovatch, E.N.; Ishkhanov, B.S.; Isupov, E.L.; Shvedunov, N.V.; Adams, G.; Amaryan, M.J.; et al. Electroproduction of p π+π− off Protons at 0.2 < Q2 < 0.6 GeV2 and 1.3 < W < 1.57 GeV with CLAS. Phys. Rev. C 2009, 79, 015204. [Google Scholar] [CrossRef]
- Ripani, M.; Burkert, V.D.; Mokeev, V.; Battaglieri, M.; De Vita, R.; Golovach, E.; Taiuti, M.; Adams, G.; Anciant, E.; Anghinolfi, M.; et al. Measurement of ep → e′pπ+π− and Baryon Resonance Analysis. Phys. Rev. Lett. 2003, 91, 022002. [Google Scholar] [CrossRef]
- Fedotov, G.V.; Skorodumina, I.A.; Burkert, V.D.; Gothe, R.W.; Hicks, K.; Mokeev, V.I.; Adhikari, S.; Armstrong, W.R.; Avakian, H.; Ball, J.; et al. Measurements of the γvp → p′π+π− cross section with the CLAS detector for 0.4 GeV2 < Q2 < 1.0 GeV2 and 1.3 GeV < W < 1.825 GeV. Phys. Rev. C 2018, 98, 025203. [Google Scholar] [CrossRef]
- Isupov, E.L.; Burkert, V.D.; Carman, D.S.; Gothe, R.W.; Hicks, K.; Ishkhanov, B.S.; Mokeev, V.I.; Adhikari, K.P.; Adhikari, S.; Adikaram, D.; et al. Measurements of ep → e′π+π−p′ Cross Sections with CLAS at 1.40 GeV < W < 2.0 GeV and 2.0 GeV2 < Q2 < 5.0 GeV2. Phys. Rev. C 2017, 96, 025209. [Google Scholar] [CrossRef]
- Trivedi, A. Measurement of New Observables from the π+π−p Electroproduction Off the Proton. Few-Body Syst. 2019, 60, 5. [Google Scholar] [CrossRef]
- Tiator, L. The MAID Legacy and Future. Few Body Syst. 2018, 59, 21. [Google Scholar] [CrossRef]
- Tiator, L.; Drechsel, D.; Kamalov, S.S.; Vanderhaeghen, M. Electromagnetic Excitation of Nucleon Resonances. Eur. Phys. J. ST 2011, 198, 141–170. [Google Scholar] [CrossRef]
- Aznauryan, I.G. Multipole Amplitudes of Pion Photoproduction on Nucleons up to 2 GeV within Dispersion Relations and Unitary Isobar Model. Phys. Rev. C 2003, 67, 015209. [Google Scholar] [CrossRef]
- Aznauryan, I.G.; Burkert, V.D.; Biselli, A.S.; Egiyan, H.; Joo, K.; Kim, W.; Park, K.; Smith, L.C.; Ungaro, M.; Adhikari, K.P.; et al. Electroexcitation of Nucleon Resonances from CLAS Data on Single Pion Electroproduction. Phys. Rev. C 2009, 80, 055203. [Google Scholar] [CrossRef]
- Aznauryan, I.G. Resonance Contributions to η Photoproduction on Protons Found Using Dispersion Relations and an Isobar Model. Phys. Rev. C 2003, 68, 065204. [Google Scholar] [CrossRef]
- Knochlein, G.; Drechsel, D.; Tiator, L. Photoproduction and Electroproduction of eta Mesons. Z. Phys. A 1995, 352, 327–343. [Google Scholar] [CrossRef]
- Mokeev, V.I.; Burkert, V.D.; Lee, T.S.H.; Elouadrhiri, L.; Fedotov, G.V.; Ishkhanov, B.S. Model Analysis of the pπ+π− Electroproduction Reaction on the Proton. Phys. Rev. C 2009, 80, 045212. [Google Scholar] [CrossRef]
- Mokeev, V.I.; Burkert, V.D.; Elouadrhiri, L.; Fedotov, G.V.; Golovatch, E.N.; Gothe, R.W.; Ishkhanov, B.S.; Isupov, E.L.; Adhikari, K.P.; Aghasyan, M.; et al. Experimental Study of the P11(1440) and D13(1520) resonances from CLAS data on ep → e′π+π−p′. Phys. Rev. C 2012, 86, 035203. [Google Scholar] [CrossRef]
- Mokeev, V.I.; Burkert, V.D.; Carman, D.S.; Elouadrhiri, L.; Fedotov, G.V.; Golovatch, E.N.; Gothe, R.W.; Hicks, K.; Ishkhanov, B.S.; Isupov, E.L.; et al. New Results from the Studies of the N(1440)1/2+, N(1520)3/2−, and Δ(1620)1/2− Resonances in Exclusive ep → e′p′π+π− Electroproduction with the CLAS Detector. Phys. Rev. C 2016, 93, 025206. [Google Scholar] [CrossRef]
- Wang, Y.F.; Döring, M.; Hergenrather, J.; Mai, M.; Mart, T.; Meißner, U.G.; Rönchen, D.; Workman, R. Global Data-Driven Determination of Baryon Transition Form Factors. Phys. Rev. Lett. 2024, 133, 101901. [Google Scholar] [CrossRef]
- Mai, M.; Döring, M.; Granados, C.; Haberzettl, H.; Hergenrather, J.; Meißner, U.G.; Rönchen, D.; Strakovsky, I.; Workman, R. Coupled-Channels Analysis of Pion and η Electroproduction within the Jülich–Bonn–Washington Model. Phys. Rev. C 2022, 106, 015201. [Google Scholar] [CrossRef]
- Kamano, H. Electromagnetic N∗ Transition Form Factors in the ANL-Osaka Dynamical Coupled-Channels Approach. Few Body Syst. 2018, 59, 24. [Google Scholar] [CrossRef]
- Hiller Blin, A.N.; Mokeev, V.; Albaladejo, M.; Fernández-Ramírez, C.; Mathieu, V.; Pilloni, A.; Szczepaniak, A.; Burkert, V.D.; Chesnokov, V.V.; Golubenko, A.A.; et al. Nucleon Resonance Contributions to Unpolarised Inclusive Electron Scattering. Phys. Rev. C 2019, 100, 035201. [Google Scholar] [CrossRef]
- Mokeev, V.I.; Burkert, V.; Carman, D.; Elouadrhiri, L.; Golovatch, E.; Gothe, R.; Hicks, K.; Ishkhanov, B.; Isupov, E.; Joo, K.; et al. Evidence for the N′(1720)3/2+ Nucleon Resonance from Combined Studies of CLAS π+π−p Photo- and Electroproduction Data. Phys. Lett. B 2020, 805, 135457. [Google Scholar] [CrossRef]
- Dugger, M.; Ritchie, B.G.; Ball, J.P.; Collins, P.; Pasyuk, E.; Arndt, R.A.; Briscoe, W.J.; Strakovsky, I.I.; Workman, R.L.; Amaryan, M.J.; et al. π+ Photoproduction on the Proton for Photon Energies from 0.725 to 2.875 GeV. Phys. Rev. C 2009, 79, 065206. [Google Scholar] [CrossRef]
- Mokeev, V.I. N∗ Structure and the Emergence of Hadron Mass, 2024. In Proceedings of the NSTAR2024—14th International Workshop on the Physics of Excited Nucleons, York, UK, 17–21 June 2024. [Google Scholar]
- Cloët, I.C.; Roberts, C.D. Explanation and Prediction of Observables Using Continuum Strong QCD. Prog. Part. Nucl. Phys. 2014, 77, 1–69. [Google Scholar] [CrossRef]
- Segovia, J.; Cloët, I.C.; Roberts, C.D.; Schmidt, S.M. Nucleon and Δ Elastic and Transition Form Factors. Few Body Syst. 2014, 55, 1185–1222. [Google Scholar] [CrossRef]
- Segovia, J.; El-Bennich, B.; Rojas, E.; Cloët, I.C.; Roberts, C.D.; Xu, S.S.; Zong, H.S. Completing the Picture of the Roper Resonance. Phys. Rev. Lett. 2015, 115, 171801. [Google Scholar] [CrossRef]
- Barabanov, M.Y.; Bedolla, M.; Brooks, W.; Cates, G.; Chen, C.; Chen, Y.; Cisbani, E.; Ding, M.; Eichmann, G.; Ent, R.; et al. Diquark Correlations in Hadron Physics: Origin, Impact and Evidence. Prog. Part. Nucl. Phys. 2021, 116, 103835. [Google Scholar] [CrossRef]
- Aznauryan, I.G.; Burkert, V.D. Electroexcitation of Nucleon Resonances in a Light-Front Relativistic Quark Model. Few Body Syst. 2018, 59, 98. [Google Scholar] [CrossRef]
- Burkert, V.D.; Lee, T.S.H. Electromagnetic Meson Production in the Nucleon Resonance Region. Int. J. Mod. Phys. E 2004, 13, 1035–1112. [Google Scholar] [CrossRef]
- Suzuki, N.; Sato, T.; Lee, T.S.H. Extraction of Electromagnetic Transition Form Factors for Nucleon Resonances within a Dynamical Coupled-Channels Model. Phys. Rev. C 2010, 82, 045206. [Google Scholar] [CrossRef]
- Ash, W.W.; Berkelman, K.; Lichtenstein, C.A.; Ramanauskas, A.; Siemann, R.H. Measurement of the γNN∗ Form Factor. Phys. Lett. B 1967, 24, 165–168. [Google Scholar] [CrossRef]
- Segovia, J.; Chen, C.; Cloët, I.C.; Roberts, C.D.; Schmidt, S.M.; Wan, S. Elastic and Transition Form Factors of the Δ(1232). Few Body Syst. 2014, 55, 1–33. [Google Scholar] [CrossRef]
- Wilson, D.J.; Cloët, I.C.; Chang, L.; Roberts, C.D. Nucleon and Roper Electromagnetic Elastic and Transition Form Factors. Phys. Rev. C 2012, 85, 025205. [Google Scholar] [CrossRef]
- Munczek, H.J. Dynamical Chiral Symmetry Breaking, Goldstone’s Theorem and the Consistency of the Schwinger-Dyson and Bethe-Salpeter Equations. Phys. Rev. D 1995, 52, 4736–4740. [Google Scholar] [CrossRef]
- Bender, A.; Roberts, C.D.; Von Smekal, L. Goldstone Theorem and Diquark Confinement Beyond Rainbow Ladder Approximation. Phys. Lett. B 1996, 380, 7–12. [Google Scholar] [CrossRef]
- Gutiérrez-Guerrero, L.X.; Bashir, A.; Cloët, I.C.; Roberts, C.D. Pion Form Factor from a Contact Interaction. Phys. Rev. C 2010, 81, 065202. [Google Scholar] [CrossRef]
- Chen, C.; Chang, L.; Roberts, C.D.; Schmidt, S.M.; Wan, S.; Wilson, D.J. Features and Flaws of a Contact Interaction Treatment of the Kaon. Phys. Rev. C 2013, 87, 045207. [Google Scholar] [CrossRef]
- Aznauryan, I.G.; Burkert, V.D. Configuration Mixings and Light-Front Relativistic Quark Model Predictions for the Electroexcitation of the Δ(1232), N(1440), and Δ(1600). arXiv 2016, arXiv:1603.06692. [Google Scholar]
- Aznauryan, I.G.; Burkert, V.D. Nucleon Electromagnetic Form Factors and Electroexcitation of Low Lying Nucleon Resonances in a Light-Front Relativistic Quark Model. Phys. Rev. C 2012, 85, 055202. [Google Scholar] [CrossRef]
- Yao, Z.Q.; Binosi, D.; Roberts, C.D. Onset of Scaling Violation in Pion and Kaon Elastic Electromagnetic Form Factors. Phys. Lett. B 2024, 855, 138823. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, C.; Cui, Z.F.; Roberts, C.D.; Schmidt, S.M.; Segovia, J.; Zong, H.S. Transition Form Factors: γ∗ + p → Δ(1232), Δ(1600). Phys. Rev. D 2019, 100, 034001. [Google Scholar] [CrossRef]
- Ripani, M.; Mokeev, V.; Anghinolfi, M.; Battaglieri, M.; Fedotov, G.; Golovach, E.; Ishkhanov, B.; Osipenko, M.; Ricco, G.; Sapunenko, V.; et al. A Phenomenological Description of π−Δ++ Photoproduction and Electroproduction in the Nucleon Resonance Region. Nucl. Phys. A 2000, 672, 220–248. [Google Scholar] [CrossRef]
- Aitchison, I.J.R. K-Matrix Formalism for Overlapping Resonances. Nucl. Phys. A 1972, 189, 417–423. [Google Scholar] [CrossRef]
- Aznauryan, I.G.; Burkert, V.D. Electroexcitation of the Δ(1232) and Δ(1600) in a Light-Front Relativistic Quark Model. Phys. Rev. C 2015, 92, 035211. [Google Scholar] [CrossRef]
- Giannini, M.M.; Santopinto, E. The Hypercentral Constituent Quark Model and its Application to Baryon Properties. Chin. J. Phys. 2015, 53, 020301. [Google Scholar] [CrossRef]
- Leinweber, D.B.; Abell, C.D.; Hockley, L.C.; Kamleh, W.; Liu, Z.W.; Stokes, F.M.; Thomas, A.W.; Wu, J.J. Understanding the Nature of Baryon Resonances. Nuovo Cim. C 2024, 47, 146. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Z.; Chang, L.; Ding, M.; Raya, K.; Roberts, C.D. Sketching Pion and Proton Mass Distributions. Phys. Lett. B 2025, 862, 139280. [Google Scholar] [CrossRef]
- Lu, Y.; Chang, L.; Raya, K.; Roberts, C.D.; Rodríguez-Quintero, J. Proton and Pion Distribution Functions in Counterpoint. Phys. Lett. B 2022, 830, 137130. [Google Scholar] [CrossRef]
- Liu, L.; Chen, C.; Roberts, C.D. Wave Functions of (I,JP) = (,) Baryons. Phys. Rev. D 2023, 107, 014002. [Google Scholar] [CrossRef]
- Achenbach, P. N∗ Physics with CLAS12 at Jefferson Lab, 2024. In Proceedings of the NSTAR2024—14th International Workshop on the Physics of Excited Nucleons, York, UK, 17–21 June 2024. [Google Scholar]
- Klimenko, V.; Carman, D.S.; Gothe, R.W.; Joo, K.; Markov, N.; Mokeev, V.I.; Niculescu, G.; Achenbach, P.; Alvarado, J.S.; Armstrong, W.; et al. Inclusive Electron Scattering in the Resonance Region off a Hydrogen Target with CLAS12. arXiv 2025, arXiv:2501.14996. [Google Scholar]
- Blin, A.N.H.; Melnitchouk, W.; Mokeev, V.I.; Burkert, V.D.; Chesnokov, V.V.; Pilloni, A.; Szczepaniak, A.P. Resonant Contributions to Inclusive Nucleon Structure Functions from Exclusive Meson Electroproduction Data. Phys. Rev. C 2021, 104, 025201. [Google Scholar] [CrossRef]
- Carman, D.S. Nucleon Resonance Studies from Exclusive KY Electroproduction, 2024. In Proceedings of the NSTAR2024—14th International Workshop on the Physics of Excited Nucleons, York, UK, 17–21 June 2024. [Google Scholar]
- Matsuyama, A.; Sato, T.; Lee, T.S.H. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region. Phys. Rep. 2007, 439, 193–253. [Google Scholar] [CrossRef]
- Gothe, R.W. Probing Bound Three-Quark Excitations from Low to High Photon Virtualities, 2024. In Proceedings of the NSTAR2024—14th International Workshop on the Physics of Excited Nucleons, York, UK, 17–21 June 2024. [Google Scholar]
- Christos, G.A. Chiral Symmetry and the U(1) Problem. Phys. Rep. 1984, 116, 251–336. [Google Scholar] [CrossRef]
- Ding, M.; Raya, K.; Bashir, A.; Binosi, D.; Chang, L.; Chen, M.; Roberts, C.D. γ∗γ → η, η′ Transition Form Factors. Phys. Rev. D 2019, 99, 014014. [Google Scholar] [CrossRef]
- Qin, S.X.; Roberts, C.D.; Schmidt, S.M. Ward–Green–Takahashi Identities and the Axial-Vector Vertex. Phys. Lett. B 2014, 733, 202–208. [Google Scholar] [CrossRef]
- Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D. Symmetry Preserving Truncations of the Gap and Bethe–Salpeter Equations. Phys. Rev. D 2016, 93, 096010. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Oakes, R.J.; Renner, B. Behavior of Current Divergences Under SU(3) x SU(3). Phys. Rev. 1968, 175, 2195–2199. [Google Scholar] [CrossRef]
- Flambaum, V.V.; Holl, A.; Jaikumar, P.; Roberts, C.D.; Wright, S.V. Sigma Terms of Light-Quark Hadrons. Few Body Syst. 2006, 38, 31–51. [Google Scholar] [CrossRef]
- Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.; Meißner, U.G. Extracting the σ-Term from Low-Energy Pion–Nucleon Scattering. J. Phys. G 2018, 45, 024001. [Google Scholar] [CrossRef]
- Aoki, S.; Aoki, Y.; Bečirević, D.; Blum, T.; Colangelo, G.; Collins, S.; Della Morte, M.; Dimopoulos, P.; Dürr, S.; Fukaya, H.; et al. FLAG Review 2019. Eur. Phys. J. C 2020, 80, 113. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Roberts, C.D.; Shrock, R.; Tandy, P.C. Essence of the Vacuum Quark Condensate. Phys. Rev. C 2010, 82, 022201. [Google Scholar] [CrossRef]
- Chang, L.; Roberts, C.D.; Tandy, P.C. Expanding the Concept of in-Hadron Condensates. Phys. Rev. C 2012, 85, 012201. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Roberts, C.D.; Shrock, R.; Tandy, P.C. Confinement Contains Condensates. Phys. Rev. C 2012, 85, 065202. [Google Scholar] [CrossRef]
- Nambu, Y. Quasiparticles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev. 1960, 117, 648–663. [Google Scholar] [CrossRef]
- Goldstone, J. Field Theories with Superconductor Solutions. Nuovo Cim. 1961, 19, 154–164. [Google Scholar] [CrossRef]
- Xing, H.Y.; Yao, Z.Q.; Li, B.L.; Binosi, D.; Cui, Z.F.; Roberts, C.D. Developing Predictions for Pion Fragmentation Functions. Eur. Phys. J. C 2024, 84, 82. [Google Scholar] [CrossRef]
- Xing, H.Y.; Bian, W.H.; Cui, Z.F.; Roberts, C.D. Kaon and Pion Fragmentation Functions. arXiv 2025, arXiv:2504.08142. [Google Scholar]
- Amendolia, S.R.; Arik, M.; Badelek, B.; Batignani, G.; Beck, G.; Bedeschi, F.; Bellamy, E.; Bertolucci, E.; Bettoni, D.; Bilokon, H.; et al. A Measurement of the Space-Like Pion Electromagnetic Form-Factor. Nucl. Phys. B 1986, 277, 168. [Google Scholar] [CrossRef]
- Horn, T.; Qian, X.; Arrington, J.; Asaturyan, R.; Benmokthar, F.; Boeglin, W.; Bosted, P.; Bruell, A.; Christy, M.E.; Chudakov, E.; et al. Scaling Study of the Pion Electroproduction Cross Sections and the Pion Form Factor. Phys. Rev. C 2008, 78, 058201. [Google Scholar] [CrossRef]
- Huber, G.M.; Blok, H.P.; Horn, T.; Beise, E.J.; Gaskell, D.; Mack, D.J.; Tadevosyan, V.; Volmer, J.; Abbott, D.; Aniol, K.; et al. Charged Pion Form-Factor Between Q2 = 0.60 GeV2 and 2.45 GeV2. II. Determination of, and results for, the Pion Form-Factor. Phys. Rev. C 2008, 78, 045203. [Google Scholar] [CrossRef]
- Dally, E.B.; Hauptman, J.M.; Kubic, J.; Stork, D.H.; Watson, A.B.; Guzik, Z.; Nigmanov, T.S.; Riabtsov, V.D.; Tsyganov, E.N.; Vodopianov, A.S.; et al. Direct Measurement of the Negative Kaon Form Factor. Phys. Rev. Lett. 1980, 45, 232–235. [Google Scholar] [CrossRef]
- Amendolia, S.R.; Batignani, G.; Beck, G.; Bellamy, E.; Bertolucci, E.; Bologna, G.; Bosisio, L.; Bradaschia, C.; Budinich, M.; Dell’Orso, M.; et al. A Measurement of the Kaon Charge Radius. Phys. Lett. B 1986, 178, 435–440. [Google Scholar] [CrossRef]
- Carmignotto, M.; Ali, S.; Aniol, K.; Arrington, J.; Barrett, B.; Beise, E.J.; Blok, H.P.; Boeglin, W.; Brash, E.J.; Breuer, H.; et al. Separated Kaon Electroproduction Cross Section and the Kaon Form Factor from 6 GeV JLab Data. Phys. Rev. C 2018, 97, 025204. [Google Scholar] [CrossRef]
- Cui, Z.F.; Binosi, D.; Roberts, C.D.; Schmidt, S.M. Pion Charge Radius from Pion+Electron Elastic Scattering Data. Phys. Lett. B 2021, 822, 136631. [Google Scholar] [CrossRef]
- Huber, G.M.; Gaskell, D. Measurement of the Pion Form Factor to High Q2, Approved Jefferson Lab 12 GeV Experiment E12-06-101. 2006. Available online: https://misportal.jlab.org/mis/physics/experiments/searchProposals.cfm?paramHall=C¶mExperimentEnergy=12GeV¶mExperimentStatusList=A,G (accessed on 1 July 2025).
- Horn, T.; Huber, G.M. Scaling Study of the L-T Separated Pion Electroproduction Cross Section at 11 GeV, Approved Jefferson Lab 12 GeV Experiment E12-07-105. 2007. Available online: https://misportal.jlab.org/mis/physics/experiments/searchProposals.cfm?paramHall=C¶mExperimentEnergy=12GeV¶mExperimentStatusList=A,G (accessed on 1 July 2025).
- Aguilar, A.C.; Ahmed, Z.; Aidala, C.; Ali, S.; Andrieux, V.; Arrington, J.; Bashir, A.; Berdnikov, V.; Binosi, D.; Chang, L.; et al. Pion and Kaon Structure at the Electron–Ion Collider. Eur. Phys. J. A 2019, 55, 190. [Google Scholar] [CrossRef]
- Arrington, J.; Gayoso, C.A.; Barry, P.C.; Berdnikov, V.; Binosi, D.; Chang, L.; Diefenthaler, M.; Ding, M.; Ent, R.; Frederico, T.; et al. Revealing the Structure of Light Pseudoscalar Mesons at the Electron–Ion Collider. J. Phys. G 2021, 48, 075106. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Ding, M.; Raya, K.; Roberts, C.D.; Rodríguez-Quintero, J.; Schmidt, S.M. Pion and Kaon Electromagnetic and Gravitational Form Factors. Eur. Phys. J. C 2024, 84, 191. [Google Scholar] [CrossRef]
- Dudek, J.; Ent, R.; Essig, R.; Kumar, K.S.; Meyer, C.; McKeown, R.D.; Meziani, Z.E.; Miller, G.A.; Pennington, M.; Richards, D.; et al. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab. Eur. Phys. J. A 2012, 48, 187. [Google Scholar] [CrossRef]
- Cui, Z.F.; Chen, C.; Binosi, D.; de Soto, F.; Roberts, C.D.; Rodríguez-Quintero, J.; Schmidt, S.M.; Segovia, J. Nucleon Elastic Form Factors at Accessible Large Spacelike Momenta. Phys. Rev. D 2020, 102, 014043. [Google Scholar] [CrossRef]
- de Jager, C.W.; Hansen, J.-O.; Jones, M.K.; LeRose, J.J.; Pentchev, L.; Wojtsekhowski, B.; Cates, G.; Liyanage, N.; Nelyubin, V.; Riordan, S.; et al. The Super-Bigbite Spectrometer for Jefferson Lab Hall A. 2010. Available online: https://hallaweb.jlab.org/experiment/SBS/GEp-V/GEp_Website.html#sbs (accessed on 1 July 2025).
- Christy, M.E.; Gautam, T.; Ou, L.; Schmookler, B.; Wang, Y.; Adikaram, D.; Ahmed, Z.; Albataineh, H.; Ali, S.F.; Aljawrneh, B.; et al. Form Factors and Two-Photon Exchange in High-Energy Elastic Electron–Proton Scattering. Phys. Rev. Lett. 2022, 128, 102002. [Google Scholar] [CrossRef]
- Cloët, I.C.; Roberts, C.D.; Thomas, A.W. Revealing Dressed-Quarks via the Proton’s Charge Distribution. Phys. Rev. Lett. 2013, 111, 101803. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.K.; Aniol, K.A.; Baker, F.T.; Berthot, J.; Bertin, P.Y.; Bertozzi, W.; Besson, A.; Bimbot, L.; Boeglin, W.U.; Brash, E.J.; et al. GEp/GMp Ratio by Polarization Transfer in p → e. Phys. Rev. Lett. 2000, 84, 1398–1402. [Google Scholar] [CrossRef]
- Gayou, O.; Aniol, K.A.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bimbot, L.; Brash, E.J.; Calarco, J.R.; Cavata, C.; Chai, Z.; et al. Measurement of GEp/GMp in p → e to Q2 = 5.6 GeV2. Phys. Rev. Lett. 2002, 88, 092301. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, V.; Perdrisat, C.F.; Aniol, K.A.; Baker, F.T.; Berthot, J.; Bertin, P.Y.; Bertozzi, W.; Besson, A.; Bimbot, L.; Boeglin, W.U.; et al. Proton Elastic Form-Factor Ratios to Q2 = 3.5 GeV2 by Polarization Transfer. Phys. Rev. C 2005, 71, 055202, Erratum in Phys. Rev. C 2005, 71, 069902. [Google Scholar] [CrossRef]
- Puckett, A.J.R.; Brash, E.J.; Gayou, O.; Jones, M.K.; Pentchev, L.; Perdrisat, C.F.; Punjabi, V.; Aniol, K.A.; Averett, T.; Benmokhtar, F.; et al. Final Analysis of Proton Form Factor Ratio Data at Q2 = 4.0, 4.8 and 5.6 GeV2. Phys. Rev. C 2012, 85, 045203. [Google Scholar] [CrossRef]
- Puckett, A.J.R.; Brash, E.J.; Jones, M.K.; Luo, W.; Meziane, M.; Pentchev, L.; Perdrisat, C.F.; Punjabi, V.; Wesselmann, F.R.; Ahmidouch, A.; et al. Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to Q2 = 8.5 GeV2. Phys. Rev. Lett. 2010, 104, 242301. [Google Scholar] [CrossRef]
- Cheng, P.; Yao, Z.Q.; Binosi, D.; Roberts, C.D. Likelihood of a Zero in the Proton Elastic Electric Form Factor. arXiv 2024, arXiv:2412.10598. [Google Scholar]
Proton | Neutron | |
---|---|---|
Measured masses (MeV) | 938.2720813 | 939.5654133 |
±0.0000058 | ±0.0000058 | |
Sum of the current | ||
quark masses (MeV) | ||
Contribution of the current | ||
quark masses to the measured | ||
nucleon mass (%) | <1.1 | <1.4 |
Hadron Final | W Coverage | Coverage | Measured | References |
---|---|---|---|---|
State | (GeV) | (GeV2) | Observables | |
1.1–1.38 | 0.16–0.36 | [84] | ||
1.1–1.55 | 0.3–0.6 | [85] | ||
1.1–1.70 | 1.7–4.5 | , | [86] | |
1.1–1.66 | 0.4–0.65 | [87] | ||
1.6–2.00 | 1.8–4.5 | [88] | ||
1.1–1.38 | 0.16–0.36 | [84] | ||
1.1–1.68 | 0.4–1.8 | , , , | [89,90,91] | |
1.1–1.39 | 3.0–6.0 | [89] | ||
1.1–1.38 | 0.16–0.36 | [84] | ||
1.1–1.80 | 0.4–1.0 | , | [92,93] | |
1.5 –2.30 | 0.2–3.1 | [94] | ||
1.50–1.80 | 5.7–7.0 | [95] | ||
1.49–1.62 | 2.4–3.6 | [96] | ||
1.61–2.60 | 1.40–3.90 | [97,98] | ||
0.5–3.90 | [98,99] | |||
0.70–5.40 | , | [100,101,102] | ||
1.68–2.60 | 1.40–3.90 | [97,98] | ||
1.40–3.90 | [98] | |||
0.70–5.40 | , | [101,102] | ||
1.3–1.6 | 0.20–0.60 | Nine 1-fold | [103] | |
1.4–2.10 | 0.4–1.5 | differential cross | [104,105] | |
1.4–2.00 | 2.0–5.0 | sections | [106,107] |
Channel | Excited Nucleon | Q2 Range (GeV2) of |
---|---|---|
States | Electrocouplings | |
, | , | 0.16–6.0 |
, , | 0.3–4.16 | |
, , | 1.6–4.5 | |
0.2–2.6 | ||
, , , | 0.25–5.0 | |
, , , | 0.5–1.5 | |
, , |
W Interval | Interval | Mass | |||
---|---|---|---|---|---|
(GeV) | (GeV2) | (GeV) | (MeV) | (MeV) | (%) |
1.46–1.56 | 2.0–3.5 | 1.55 ± 0.014 | 244 ± 21 | 154 ± 21 | 50–78 |
1.51–1.61 | 2.0–3.5 | 1.57 ± 0.018 | 259 ± 21 | 169 ± 22 | 52–81 |
1.56–1.66 | 2.0–3.5 | 1.57 ± 0.042 | 256 ± 33 | 166 ± 34 | 46–90 |
1.46–1.56 | 3.0–5.0 | 1.56 ± 0.030 | 249 ± 37 | 158 ± 37 | 42–92 |
1.51–1.61 | 3.0–5.0 | 1.56 ± 0.030 | 249 ± 34 | 158 ± 34 | 44–89 |
1.56–1.66 | 3.0–5.0 | 1.58 ± 0.039 | 263 ± 29 | 172 ± 29 | 49–86 |
PDG | 1.50–1.64 | 200–300 | 58–82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achenbach, P.; Carman, D.S.; Gothe, R.W.; Joo, K.; Mokeev, V.I.; Roberts, C.D. Electroexcitation of Nucleon Resonances and Emergence of Hadron Mass. Symmetry 2025, 17, 1106. https://doi.org/10.3390/sym17071106
Achenbach P, Carman DS, Gothe RW, Joo K, Mokeev VI, Roberts CD. Electroexcitation of Nucleon Resonances and Emergence of Hadron Mass. Symmetry. 2025; 17(7):1106. https://doi.org/10.3390/sym17071106
Chicago/Turabian StyleAchenbach, Patrick, Daniel S. Carman, Ralf W. Gothe, Kyungseon Joo, Victor I. Mokeev, and Craig D. Roberts. 2025. "Electroexcitation of Nucleon Resonances and Emergence of Hadron Mass" Symmetry 17, no. 7: 1106. https://doi.org/10.3390/sym17071106
APA StyleAchenbach, P., Carman, D. S., Gothe, R. W., Joo, K., Mokeev, V. I., & Roberts, C. D. (2025). Electroexcitation of Nucleon Resonances and Emergence of Hadron Mass. Symmetry, 17(7), 1106. https://doi.org/10.3390/sym17071106