Lateral Asymmetries and Their Predictive Ability for Maximal Incremental Cycle Ergometer Performance in Road Cyclists
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.3.1. Neuromuscular Properties Assessment
2.3.2. ROM Assessment
2.3.3. Strength Assessment
2.3.4. Muscular Electrical Activity Assessment
2.3.5. Maximal Incremental Cycle Ergometer Test
2.3.6. Statistical Analysis
3. Results
4. Discussion
5. Study Limitations
6. Practical Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AKE | Active knee test |
BF | Biceps femoris |
BMI | Body mass index |
cm | Centimeters |
CV | Coefficient of variation |
D | Dominant |
DL | Dominant leg |
Dm | Radial muscle belly displacement |
DOAJ | Directory of open access journals |
EMG | Electromyography |
HR | Heart rate |
Hz | Hertz |
IC | Interval confidence |
ICC | Intraclass correlation coefficient |
kg | Kilograms |
LD | Linear dichroism |
m·s−1 | Meter per second |
Mm·s−1 | Millimeter per second |
mA | Milliamps |
MDPI | Multidisciplinary Digital Publishing Institute |
mmol·L−1 | Millimoles per liter |
ms | Milliseconds |
mV | Millivolt |
ND | Non-dominant |
NDL | Non-dominant leg |
Pavg | Average power |
RPE | Rate of perceived exertion |
Reps | Number of repetitions |
RF | Rectus femoris |
RMS | Root mean square |
ROM | Range of motion |
SD | Standard deviation |
Tc | Contraction time |
TLA | Three letter acronym |
TMG | Tensiomyography |
Vavg | Average speed |
VIF | Variation inflation factor |
VL | Vastus lateralis |
VL-EMG | Electrical vastus lateralis activity |
VM | Vastus medialis |
VO2max | Maximal oxygen consumption |
VO2peak | Peak oxygen uptake |
Vrd | Radial displacement velocity |
VT | Ventilatory threshold |
W | Watts |
ηp2 | Partial eta square |
[La] | Lactate concentration |
References
- Mujika, I.; Padilla, S. Physiological and performance characteristics of male professional road cyclists. Sports Med. 2001, 31, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Spindler, D.J.; Allen, M.S.; Vella, S.A.; Swann, C. The psychology of elite cycling: A systematic review. J. Sports Sci. 2018, 36, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Clark, B.; Welvaert, M.; Skorski, S.; Garvican-Lewis, L.A.; Saunders, P.; Thompson, K.G. Effect of environmental and feedback interventions on pacing profiles in cycling: A meta-analysis. Front. Physiol. 2016, 7, 591. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Hoyos, J.; Perez, M.; Santalla, A.; Chicharro, J.L. Inverse relationship between VO2max and economy/efficiency in world-class cyclists. Med. Sci. Sports Exerc. 2002, 34, 2079–2084. [Google Scholar]
- Lucia, A.; Hoyos, M.; Santalla, A.; Pérez, M.; Chicharro, J.L. Kinetics of VO2max in professional cyclists. Med. Sci. Sports Exerc. 2002, 34, 326–331. [Google Scholar]
- Sanders, D.; van Erp, T. The Physical Demands and Power Profile of Professional Men’s Cycling Races: An Updated Review. Int. J. Sport. Physiol. Perform. 2021, 16, 3–12. [Google Scholar] [CrossRef]
- Yamamoto, L.M.; Klau, J.F.; Casa, D.J.; Kraemer, W.J.; Armstrong, L.E.; Maresh, C.M. The effects of resistance training on road cycling performance among highly trained cyclists: A systematic review. J. Strength Cond. Res. 2010, 24, 560–566. [Google Scholar] [CrossRef]
- Carpes, F.P.; Mota, C.B.; Faria, I.E. On the bilateral asymmetry during running and cycling—A review considering leg preference. Phys. Ther. Sport. 2010, 11, 136–142. [Google Scholar] [CrossRef]
- McGrath, T.M.; Waddington, G.; Scarvell, J.M.; Ball, N.B.; Creer, R.; Woods, K.; Smith, D. The effect of limb dominance on lower limb functional performance-a systematic review. J. Sports Sci. 2016, 34, 289–302. [Google Scholar] [CrossRef]
- Afonso, J.; Peña, J.; Sá, M.; Virgile, A.; García-de-Alcaraz, A.; Bishop, C. Why Sports Should Embrace Bilateral Asymmetry: A Narrative Review. Symmetry 2022, 14, 1993. [Google Scholar] [CrossRef]
- Hewit, J.K.; Cronin, J.B.; Hume, P.A. Asymmetry in multi-directional jumping tasks. Phys. Ther. Sport. 2012, 13, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Menzel, H.J.; Chagas, M.H.; Szmuchrowski, L.A.; Araujo, S.R.; de Andrade, A.G.; de Jesus-Moraleida, F.R. Analysis of lower limb asymmetries by isokinetic and vertical jump tests in soccer players. J. Strength Cond. Res. 2013, 27, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Carpes, F.P.; Rossato, M.; Faria, I.E.; Mota, C.B. Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial. J. Sports Med. Phys. Fit. 2007, 47, 51–57. [Google Scholar] [CrossRef]
- Bini, R.R.; Hume, P.A. Assessment of Bilateral Asymmetry in Cycling Using a Commercial Instrumented Crank System and Instrumented Pedals. Int. J. Sports Physiol. Perform. 2014, 9, 876–881. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
- Maloney, S.J. The Relationship Between Asymmetry and Athletic Performance: A Critical Review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef]
- Parkinson, A.O.; Apps, C.L.; Morris, J.G.; Barnett, C.T.; Lewis, M.G.C. The Calculation, Thresholds and Reporting of Inter-Limb Strength Asymmetry: A Systematic Review. J. Sports Sci. Med. 2021, 20, 594–617. [Google Scholar] [CrossRef]
- Bishop, C. Interlimb Asymmetries: Are Thresholds a Usable Concept? Strength Cond. J. 2021, 43, 32–36. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Jones, P.A. Assessing Interlimb Asymmetries: Are We Heading in the Right Direction? Strength Cond. J. 2021, 43, 91–100. [Google Scholar] [CrossRef]
- Cavanagh, P.R.; Petak, K.L.; Shapiro, R.; Daly, D. Bilateral asymmetry in work output during cycle ergometer pedalling. Med. Sci. Sports Exerc. 1974, 6, 80–81. [Google Scholar]
- Daly, D.J.; Cavanagh, P.R. Asymmetry in bicycle ergometer pedalling. Med. Sci. Sports 1976, 8, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Bini, R.; Hume, P.; Croft, J.L.; Kilding, A. Pedal force effectiveness in cycling: A review of constraints and training effects. J. Sci. Cycl. 2013, 2, 11–24. [Google Scholar]
- Bini, R.R.; Hume, P.A. Relationship between pedal force asymmetry and performance in cycling time trial. J. Sports Med. Phys. Fit. 2015, 55, 892–898. [Google Scholar]
- García-López, J.; Díez-Leal, S.; Larrazabal, J.; Ogueta-Alday, A. No bilateral asymmetry during pedalling in healthy cyclists of different performance levels. In Proceedings of the ISBS-Conference Proceedings Archive, 33rd International Conference on Biomechanics in Sports, Poitiers, France, 29 June–3 July 2015. [Google Scholar]
- Rannama, I.; Port, K.; Bazanov, B.; Pedak, K. Sprint cycling performance and asymmetry. J. Hum. Sport. Exerc. 2015, 10, S248–S258. [Google Scholar] [CrossRef]
- Bini, R.R.; Carpes, F.P.; Diefenthaeler, F.; Mota, C.B.; Guimarães, A.C.S. Physiological and electromyographic responses during 40-km cycling time trial: Relationship to muscle coordination and performance. J. Sci. Med. Sport. 2008, 11, 363–370. [Google Scholar] [CrossRef]
- Carpes, F.P.; Diefenthaeler, F.; Bini, R.R.; Stefanyshyn, D.J.; Faria, I.E.; Mota, C.B. Influence of leg preference on bilateral muscle activation during cycling. J. Sports Sci. 2011, 29, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Yanci, J.; Los Arcos, A. Muscle strength and leg asymmetries in elite runners and cyclists. Int. Sport. Med. J. 2014, 15, 285–297. [Google Scholar]
- Pimentel, R.E.; Baker, B.; Soliday, K.; Reiser, R.F. Bone mineral density and lean mass asymmetries are greater in cyclists than non-cyclists. J. Sports Sci. 2019, 37, 2279–2285. [Google Scholar] [CrossRef]
- Iglesias-Caamaño, M.; Álvarez-Yates, T.; Carballo-López, J.; Cuba-Dorado, A.; García-García, Ó. Is Asymmetry Different Depending on How It Is Calculated? Symmetry 2022, 14, 2195. [Google Scholar] [CrossRef]
- García-García, O.; Molina-Cárdenas, Á.; Álvarez-Yates, T.; Iglesias-Caamaño, M.; Serrano-Gómez, V. Individualized Analysis of Lateral Asymmetry Using Hip-Knee Angular Measures in Soccer Players: A New Methodological Perspective of Assessment for Lower Limb Asymmetry. Int. J. Environ. Res. Public Health 2022, 19, 4672. [Google Scholar] [CrossRef]
- Álvarez-Yates, T.; Iglesias-Caamaño, M.; Cuba-Dorado, A.; Serrano-Gómez, V.; Ferreira-Lima, V.; Nakamura, F.Y.; García-García, O. Explanatory Model for Elite Canoeists’ Performance Using a Functional Electromechanical Dynamometer Based on Detected Lateral Asymmetry. Symmetry 2024, 16, 347. [Google Scholar] [CrossRef]
- Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb asymmetries: The need for an individual approach to data analysis. J. Strength Cond. Res. 2021, 35, 695–701. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- García-García, O.; Cancela-Carral, J.M.; Huelin Trillo, F. Neuromuscular profile of top level women kayakers, assessed through tensiomyography. J. Strength Cond. Res. 2015, 29, 844–853. [Google Scholar] [CrossRef]
- García-García, O.; Cuba-Dorado, A.; Fernández-Redondo, D.; López-Chicharro, J. Neuromuscular parameters predict the performance in an incremental cycling test. Int. J. Sports Med. 2018, 39, 909–915. [Google Scholar] [CrossRef]
- Perotto, A.; Delagi, E.F.; Iazzetti, J.; Morrison, D. Anatomical Guide for the Electromyographer: The Limbs and Trunk; Charles C Thomas, Ltd.: Springfield, IL, USA, 2005. [Google Scholar]
- Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998, 30, 1164–1168. [Google Scholar] [CrossRef]
- Gajdosik, R.; Lusin, G. Hamstring muscle tightness: Reliability of an active-knee-extension test. Phys. Ther. 1983, 63, 1085–1088. [Google Scholar] [CrossRef]
- Vivancos, A.L.; Zambudio, A.C.; Ramirez, F.C.; Del Águila, A.; Castrillón, F.J.O.; Pardo, P.J.M. Reliability and validity of a linear position transducer for strength assessment. Br. J. Sports Med. 2014, 48, A5. [Google Scholar]
- Merletti, R.; Parker, P.A. Electromyography: Physiology, Engineering, and Non-Invasive Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Birds, S.; Davison, R. (Eds.) Guidelines for the Physiological Testing of Athletes; British Association of Sport and Exercise Sciences: Leeds, UK, 1997. [Google Scholar]
- Whaley, M.H.; Kaminsky, L.A.; Dwyer, G.B.; Getchell, L.H.; Norton, J.A. Predictors of over- and underachievement of age-predicted maximal heart rate. Med. Sci. Sports Exerc. 1992, 24, 1173–1179. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: New York, NY, USA, 1988. [Google Scholar]
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar]
- Almquist, N.W.; Hansen, J.; Rønnestad, B.R. Development of cycling performance variables and Du-Rability in female and male national team cyclists: From junior to senior. Med. Sci. Sports Exerc. 2023, 55, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Alejo, L.B.; Montalvo-Pérez, A.; Valenzuela, P.L.; Revuelta, C.; Ozcoidi, L.M.; de la Calle, V.; Mateo-March, M.; Lucia, A.; Santalla, A.; Barranco-Gil, D. Comparative analysis of endurance, strength and body composition indicators in professional, under-23 and junior cyclists. Front. Physiol. 2022, 13, 945552. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Landaluce, J.; Fernández-García, B.; Rodríguez-Alonso, M.; García-Herrero, F.; García-Zapico, P.; Patterson, A.M.; Terrados, N. Physiological differences and rating of perceived exertion (RPE) in professional, amateur and young cyclists. J. Sports Med. Phys. Fit. 2002, 42, 389–395. [Google Scholar]
- Gallo, G.; Mateo-March, M.; Leo, P.; Campos-Donaire, A.; Gandia-Soriano, A.; Giorgi, A.; Faelli, E.; Ruggeri, P.; Codella, R.; Mujika, I.; et al. Power road-derived physical performance parameters in junior, under-23, and professional road cycling climbers. Int. J. Sports Physiol. Perform. 2022, 17, 1094–1102. [Google Scholar] [CrossRef]
- Malliaropoulos, N.; Kakoura, L.; Tsitas, K.; Christodoulou, D.; Siozos, A.; Malliaras, P.; Maffulli, N. Active knee range of motion assessment in elite track and field athletes: Normative values. Muscles Ligaments Tendons J. 2015, 5, 203. [Google Scholar] [CrossRef]
- Perkins, S.; Canavan, P. Isokinetic Assessment of knee flexor and extensor strength and lower extremity flexibility assessment of an NCAA Division III men’s soccer team. Int. J. Sports Phys. Ther. 2023, 18, 626. [Google Scholar] [CrossRef]
- García-García, O.; Cancela-Carral, J.M.; Martínez-Trigo, R.; Serrano-Gómez, V. Differences in the contractile properties of the knee extensor and flexor muscles in professional road cyclists during the season. J. Strength Cond. Res. 2013, 27, 2760–2767. [Google Scholar] [CrossRef]
- Farrell, J.W.; Neira, V.E. Contralateral Asymmetry in Cycling Power Is Reproducible and Independent of Exercise Intensity at Submaximal Power Outputs. Symmetry 2023, 15, 1142. [Google Scholar] [CrossRef]
- Smak, W.; Neptune, R.R.; Hull, M.L. The influence of pedaling rate on bilateral asymmetry in cycling. J. Biomech. 1999, 32, 899–906. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.; Kobal, R.; Abad, C.; Komatsu, W.; Cunha, R.; Arliani, G.; Ejnisman, B.; de Castro Pochini, A.; Nakamura, F.; et al. Functional Screening Tests: Interrelationships and Ability to Predict Vertical Jump Performance. Int. J. Sports Med. 2018, 39, 189–197. [Google Scholar] [CrossRef]
- Støren, Ø.; Ulevåg, K.; Larsen, M.H.; Støa, E.M.; Helgerud, J. Physiological determinants of the cycling time trial. J. Strength Cond. Res. 2013, 27, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
- Olds, T.S.; Norton, K.I.; Lowe, E.L.; Olive, S.; Reay, F.; Ly, S. Modeling road-cycling performance. J. Appl. Physiol. 1995, 78, 1596–1611. [Google Scholar] [CrossRef] [PubMed]
- Leo, P.; Spragg, J.; Wakefield, J.; Swart, J. Predictors of cycling performance success: Traditional approaches and a novel method to assess performance capacity in U23 road cyclists. J. Sci. Med. Sport. 2023, 26, 52–57. [Google Scholar] [CrossRef] [PubMed]
Age (years) | Height (cm) | Weight (kg) | Body Fat (%) | Muscle Mass (kg) | BMI | Water (%) | VO2max (mL/kg/min) | |
---|---|---|---|---|---|---|---|---|
Junior (n = 10) | 16.33 ± 0.50 | 170.63 ± 4.15 | 62.22 ± 5.44 | 8.87 ± 4.58 | 53.68 ± 2.67 | 21.41 ± 2.11 | 66.00 ± 4.03 | 65.58 ± 6.12 |
Under-23 (n = 27) | 19.47 ± 1.22 | 175.49 ± 7.21 | 65.64 ± 7.27 | 7.04 ± 3.01 | 57.74 ± 5.04 | 20.81 ± 2.39 | 66.03 ± 5.32 | 69.11 ± 6.51 |
Elite (n = 18) | 23.50 ± 2.22 | 179.69 ± 8.14 | 69.75 ± 7.75 | 7.81 ± 3.87 | 61.35 ± 7.59 | 21.57 ± 2.10 | 65.65 ± 3.14 | 66.91 ± 6.01 |
Total (n = 55) | 20.31 ± 2.90 | 175.97 ± 7.24 | 66.13 ± 6.83 | 7.56 ± 3.53 | 58.32 ± 6.29 | 21.17 ± 2.24 | 65.90 ± 4.40 | 68.0 ± 6.61 |
Category | Mean (cm) ± SD | % Asymmetry | Asymmetry | Asymmetry Direction | Threshold | |||
---|---|---|---|---|---|---|---|---|
Dominant | Non-Dominant | (Mean ± SD) | IC 95% | |||||
BF | Tc | Junior | 36.03 ± 10.24 | 36.68 ± 14.74 | 22.66 ± 21.56 | 6.09–39.24 | NDL | 26.97 |
Under-23 | 39.68 ± 10.76 | 36.07 ± 9.78 | 19.62 ± 16.58 | 13.06–26.18 | DL | 22.94 | ||
Elite | 41.44 ± 10.13 | 40.93 ±11.22 | 23.30 ± 21.90 | 12.75–33.86 | DL | 27.68 | ||
Total | 39.69 ± 10.43 | 37.85 ± 11.19 | 21.39 ± 19.08 | 16.23–26.55 | DL | 25.21 | ||
Dm | Junior | 7.60 ± 2.00 | 6.90 ± 1.85 | 22.77 ± 23.75 | 4.51–41.03 | DL | 27.52 | |
Under-23 | 7.65 ± 2.25 | 7.12 ± 2.14 | 20.16 ± 14.13 | 14.57–25.75 | DL | 22.99 | ||
Elite | 8.37 ± 2.00 | 8.08 ± 3.14 | 21.68 ± 18.04 | 12.98–30.37 | DL | 25.98 | ||
Total | 7.89 ± 2.12 | 7.42 ± 2.50 | 21.11 ± 17.01 | 16.51–25.71 | DL | 24.51 | ||
Vrd | Junior | 173.54 ± 48.12 | 163.61 ± 56.00 | 16.72 ± 12.59 | 7.04–26.39 | DL | 19.24 | |
Under-23 | 157.77 ± 38.51 | 161.44 ± 41.84 | 20.48 ± 12.49 | 15.54–25.42 | NDL | 22.98 | ||
Elite | 167.21 ± 38.39 | 156.67 ± 46.42 | 19.05 ± 12.76 | 12.90–25.20 | DL | 21.60 | ||
Total | 163.61 ± 39.83 | 160.15 ± 45.09 | 19.37 ± 12.44 | 16.01–22.73 | DL | 21.86 | ||
RF | Tc | Junior | 27.26 ± 3.86 | 26.09 ± 3.93 | 15.88 ± 8.94 | 9.00–22.76 | DL | 17.67 |
Under-23 | 27.71 ± 6.95 | 28.08 ± 6.18 | 15.94 ± 10.34 | 11.85–20.04 | NDL | 18.01 | ||
Elite | 29.76 ± 4.60 | 28.84 ± 5.25 | 11.37 ± 10.68 | 6.22–16.52 | DL | 13.51 | ||
Total | 28.35 ± 5.80 | 28.01 ± 5.54 | 14.35 ± 10.30 | 11.57–17.14 | DL | 16.41 | ||
Dm | Junior | 7.34 ± 2.00 | 6.72 ± 1.61 | 20.59 ± 16.09 | 8.22–32.97 | DL | 23.81 | |
Under-23 | 7.06 ± 2.02 | 7.15 ± 2.09 | 19.40 ± 11.08 | 15.02–23.79 | NDL | 21.62 | ||
Elite | 7.15 ± 2.42 | 7.22 ± 2.18 | 21.39 ± 12.96 | 15.14–27.64 | NDL | 23.98 | ||
Total | 7.14 ± 2.12 | 7.10 ± 2.02 | 20.28 ± 12.42 | 16.92–23.64 | DL | 22.76 | ||
Vrd | Junior | 216.36 ± 53.12 | 206.89 ± 44.44 | 16.25 ± 12.52 | 6.62–25.88 | DL | 18.75 | |
Under-23 | 210.96 ± 61.62 | 209.68 ± 64.38 | 17.55 ± 12.59 | 12.57–22.53 | DL | 20.07 | ||
Elite | 194.61 ± 74.55 | 199.44 ± 45.52 | 20.39 ± 14.54 | 13.38–27.40 | NDL | 23.30 | ||
Total | 206.20 ± 64.61 | 205.69 ± 54.78 | 18.32 ± 13.13 | 14.77–21.87 | DL | 20.95 | ||
VL | Tc | Junior | 24.12 ± 3.15 | 20.72 ± 1.35 | 14.70 ± 10.13 | 6.91–22.49 | DL | 16.73 |
Under-23 | 21.95 ± 2.52 | 21.51 ± 2.36 | 7.74 ± 6.18 | 5.29–10.19 | DL | 8.98 | ||
Elite | 25.72 ± 9.02 | 22.03 ± 2.60 | 15.72 ± 17.25 | 7.40 ± 24.04 | DL | 19.17 | ||
Total | 23.61 ± 5.88 | 21.56 ± 2.33 | 11.63 ± 12.16 | 8.35–14.92 | DL | 14.06 | ||
Dm | Junior | 5.62 ± 1.45 | 5.32 ± 1.16 | 13.53 ± 10.33 | 5.59–21.47 | DL | 15.60 | |
Under-23 | 5.33 ± 1.46 | 5.49 ± 1.37 | 18.21 ± 12.31 | 13.34–23.08 | NDL | 20.67 | ||
Elite | 5.21 ± 1.27 | 4.76 ± 1.63 | 21.47 ± 12.42 | 15.49–27.46 | DL | 23.95 | ||
Total | 5.34 ± 1.38 | 5.21 ± 1.45 | 18.57 ± 12.14 | 15.29–21.86 | DL | 21.00 | ||
Vrd | Junior | 190.66 ± 56.65 | 204.95 ± 38.13 | 14.56 ± 15.39 | 2.73–26.39 | NDL | 17.64 | |
Under-23 | 193.85 ± 46.96 | 203.50 ± 44.41 | 15.91 ± 13.86 | 10.43–21.40 | NDL | 18.68 | ||
Elite | 172.41 ± 53.99 | 172.99 ± 57.74 | 23.45 ± 14.18 | 16.61–30.28 | NDL | 26.29 | ||
Total | 185.92 ± 51.07 | 193.20 ± 49.96 | 18.29 ± 14.46 | 14.38–22.20 | NDL | 21.18 | ||
VM | Tc | Junior | 23.97 ± 3.97 | 25.48 ± 3.61 | 12.81 ± 7.31 | 7.19–18.43 | NDL | 14.27 |
Under-23 | 24.63 ± 4.13 | 24.90 ± 3.05 | 7.99 ± 6.15 | 5.55–10.42 | NDL | 9.22 | ||
Elite | 27.42 ± 9.49 | 28.85 ± 9.66 | 15.41 ± 18.79 | 6.35–24.47 | NDL | 19.17 | ||
Total | 25.48 ± 6.53 | 26.36 ± 6.39 | 11.34 ± 12.48 | 7.97–14.71 | NDL | 13.84 | ||
Dm | Junior | 7.20 ± 0.93 | 7.63 ± 1.06 | 10.46 ± 7.74 * | 4.50–16.41 | NDL | 12.01 | |
Under-23 | 8.25 ± 1.81 | 8.56 ± 1.01 | 15.48 ± 10.77 | 11.22–19.75 | NDL | 17.63 | ||
Elite | 7.84 ± 2.84 | 8.44 ± 2.09 | 23.32 ± 18.61 | 14.34–32.29 | NDL | 27.04 | ||
Total | 7.94 ± 2.13 | 8.37 ± 1.49 | 17.37 ± 14.23 | 13.52–21.21 | NDL | 20.22 | ||
Vrd | Junior | 243.63 ± 35.06 | 245.11 ± 58.45 | 13.83 ± 14.39 | 2.77–24.90 | NDL | 16.71 | |
Under-23 | 277.11 ± 83.47 | 278.51 ± 46.29 | 16.32 ± 13.30 | 11.05–21.58 | NDL | 18.98 | ||
Elite | 248.30 ± 117.25 | 254.07 ± 95.52 | 20.08 ± 12.50 | 14.05–26.10 | NDL | 22.58 | ||
Total | 261.68 ± 91.41 | 264.60 ± 69.12 | 17.21 ± 13.16 | 13.65–20.78 | NDL | 19.84 |
Kappa Coefficient | Level of Agreement | |||
---|---|---|---|---|
TMG | BF | Tc—Dm | 0.58 | Moderate |
Tc—Vrd | 0.12 | Slight | ||
Dm—Vrd | 0.59 | Moderate | ||
RF | Tc—Dm | 0.50 | Moderate | |
Tc—Vrd | 0.12 | Slight | ||
Dm—Vrd | 0.59 | Moderate | ||
VL | Tc—Dm | 0.57 | Moderate | |
Tc—Vrd | 0.15 | Slight | ||
Dm—Vrd | 0.56 | Moderate | ||
VM | Tc—Dm | 0.31 | Fair | |
Tc—Vrd | 0.08 | Slight | ||
Dm—Vrd | 0.71 | Substantial | ||
Leg Press | Vavg—Pavg | 0.97 | Near perfect | |
Vavg—Reps | 0.36 | Fair | ||
Pavg—Reps | 0.39 | Fair | ||
EMG VL | VT1—VT2 | 0.82 | Near perfect | |
VT1—VO2max | 0.87 | Near perfect | ||
VT1—TEST | 0.90 | Near perfect | ||
VT2—VO2max | 0.77 | Substantial | ||
VT2—TEST | 0.77 | Substantial | ||
VO2max—TEST | 0.95 | Near perfect |
Category | Mean (cm) ± SD | % Asymmetry | Asymmetry | Asymmetry Direction | Threshold | ||
---|---|---|---|---|---|---|---|
Dominant Limb | Non-Dominant Limb | (Mean ± SD) | IC 95% | ||||
AKE | Junior | 152.11 ± 9.04 | 153.56 ± 12.87 | 3.6 ± 2.3 | 2.30–4.90 | NDL | 4.06 |
Under-23 | 165.10 ± 6.11 | 166.67 ± 5.39 | 2.3 ± 1.8 | 1.55–3.05 | NDL | 2.66 | |
Elite | 162.77 ± 10.12 | 162.52 ± 10.63 | 1.7 ± 1.9 | 0.75–2.59 | DL | 2.08 | |
Total | 162.16 ± 9.23 | 163.10 ± 9.87 | 2.3 ± 2.0 | 1.93–3.11 | NDL | 2.70 |
Category | Mean (cm) ± SD | % Asymmetry | Asymmetry | Asymmetry Direction | Threshold | |||
---|---|---|---|---|---|---|---|---|
Dominant | Non-Dominant | (Mean ± SD) | IC 95% | |||||
Leg press | Vavg | Junior | 0.364 ± 0.04 | 0.386 ± 0.04 | 8.36 ± 6.38 | 3.46–13.27 | NDL | 9.64 |
Under-23 | 0.392 ± 0.10 | 0.367 ± 0.10 | 10.34 ± 8.31 | 6.34–14.34 | DL | 12.00 | ||
Elite | 0.423 ± 0.93 | 0.404 ± 0.07 | 10.23 ± 6.86 | 5.86–14.59 | DL | 11.60 | ||
Total | 0.395 ± 0.89 | 0.382 ± 0.08 | 9.86 ± 7.36 | 7.51–12.22 | DL | 11.33 | ||
Pavg | Junior | 224.01 ± 35.29 | 236.91 ± 37.41 | 8.86 ± 6.73 | 3.68–14.03 | NDL | 10.21 | |
Under-23 | 226.82 ± 107.28 | 234.22 ± 75.44 | 13.17 ± 12.92 | 6.94–19.40 | NDL | 15.75 | ||
Elite | 286.18 ± 77.69 | 271.34 ± 62.56 | 10.23 ± 7.21 | 5.64–14.81 | DL | 11.67 | ||
Total | 263.00 ± 88.28 | 245.96 ± 65.59 | 11.32 ± 10.22 | 8.05–14.58 | DL | 13.36 | ||
Reps | Junior | 20.78 ± 14.19 | 26.56 ± 17.37 | 33.42 ± 19.38 | 18.75–48.09 | NDL | 37.30 | |
Under-23 | 17.74 ± 9.38 | 16.42 ± 10.44 | 29.85 ± 20.05 | 20.18–39.52 | DL | 33.86 | ||
Elite | 18.50 ± 12.42 | 16.92 ± 11.21 | 34.27 ± 29.56 | 15.48–53.05 | DL | 40.18 | ||
Total | 18.65 ± 11.26 | 18.85 ± 12.86 | 31.98 ± 22.61 | 24.75–39.38 | NDL | 36.50 |
Category | Mean (cm) ± SD | % Asymmetry | Asymmetry | Asymmetry Direction | Threshold | |||
---|---|---|---|---|---|---|---|---|
Dominant | Non-Dominant | (Mean ± SD) | IC 95% | |||||
VL-EMG | VT1 | Junior | 0.164 ± 0.024 | 0.174 ± 0.026 | 17.37 ± 10.28 | 10.11–30.47 | NDL | 19.43 |
Under-23 | 0.150 ± 0.032 | 0.162 ± 0.039 | 19.85 ± 15.68 | 9.88–29.81 | NDL | 22.99 | ||
Elite | 0.187 ± 0.060 | 0.155 ± 0.052 | 22.36 ± 16.83 | 11.05–33.68 | DL | 25.73 | ||
Total | 0.165 ± 0.045 | 0.162 ± 0.042 | 20.87 ± 14.74 | 15.37–26.38 | DL | 23.82 | ||
VT2 | Junior | 0.200 ± 0.038 | 0.217 ± 0.036 | 20.95 ± 14.76 | 7.29–34.61 | NDL | 23.90 | |
Under-23 | 0.163 ± 0.037 | 0.185 ± 0.046 | 20.06 ± 14.88 | 11.82–28.30 | NDL | 23.04 | ||
Elite | 0.209 ± 0.080 | 0.73 ± 0.060 | 22.68 ± 13.70 | 14.40–30.96 | NDL | 25.42 | ||
Total | 0.185 ± 0.058 | 0.187 ± 0.051 | 21.21 ± 14.04 | 16.39–26.04 | NDL | 24.02 | ||
VO2max | Junior | 0.241 ± 0.092 | 0.235 ± 0.073 | 22.15 ± 12.52 | 10.57–33.73 | DL | 24.65 | |
Under-23 | 0.183 ± 0.062 | 0.200 ± 0.056 | 22.37 ± 19.13 | 11.78–32.97 | NDL | 26.20 | ||
Elite | 0.277 ± 0.095 | 0.203 ± 0.050 | 23.50 ± 15.27 | 14.26–32.73 | DL | 26.55 | ||
Total | 0.226 ± 0.089 | 0.208 ± 0.057 | 22.75 ± 16.16 | 17.19–28.30 | DL | 25.98 | ||
TEST | Junior | 0.183 ± 0.037 | 0.194 ± 0.044 | 20.29 ± 11.00 | 10.11–30.47 | NDL | 22.49 | |
Under-23 | 0.143 ± 0.033 | 0.169 ± 0.072 | 19.85 ± 15.68 | 9.88–29.81 | NDL | 22.99 | ||
Elite | 0.204 ± 0.082 | 0.159 ± 0.041 | 22.36 ± 16.83 | 11.05–33.68 | DL | 25.73 | ||
Total | 0.172 ± 0.060 | 0.171 ± 0.056 | 20.87 ± 14.74 | 15.37–26.38 | DL | 23.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias-Caamaño, M.; Abalo-Rey, J.M.; Álvarez-Yates, T.; Fernández-Redondo, D.; López-Campos, J.A.; Nakamura, F.Y.; Cuba-Dorado, A.; García-García, O. Lateral Asymmetries and Their Predictive Ability for Maximal Incremental Cycle Ergometer Performance in Road Cyclists. Symmetry 2025, 17, 1060. https://doi.org/10.3390/sym17071060
Iglesias-Caamaño M, Abalo-Rey JM, Álvarez-Yates T, Fernández-Redondo D, López-Campos JA, Nakamura FY, Cuba-Dorado A, García-García O. Lateral Asymmetries and Their Predictive Ability for Maximal Incremental Cycle Ergometer Performance in Road Cyclists. Symmetry. 2025; 17(7):1060. https://doi.org/10.3390/sym17071060
Chicago/Turabian StyleIglesias-Caamaño, Mario, Jose Manuel Abalo-Rey, Tania Álvarez-Yates, Diego Fernández-Redondo, Jose Angel López-Campos, Fábio Yuzo Nakamura, Alba Cuba-Dorado, and Oscar García-García. 2025. "Lateral Asymmetries and Their Predictive Ability for Maximal Incremental Cycle Ergometer Performance in Road Cyclists" Symmetry 17, no. 7: 1060. https://doi.org/10.3390/sym17071060
APA StyleIglesias-Caamaño, M., Abalo-Rey, J. M., Álvarez-Yates, T., Fernández-Redondo, D., López-Campos, J. A., Nakamura, F. Y., Cuba-Dorado, A., & García-García, O. (2025). Lateral Asymmetries and Their Predictive Ability for Maximal Incremental Cycle Ergometer Performance in Road Cyclists. Symmetry, 17(7), 1060. https://doi.org/10.3390/sym17071060