Behavioral Lateralization and Boldness Traits Across Eight Teleost Fish Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Apparatus and Procedure
- (1)
- Latency to explore the environment was defined by the time necessary to change the position of their head (in any direction) for at least 50% of the subjects’ body size during the acclimation period. Such a movement must occur within 4 s. This excluded the possibility that minimal, slow movements might be considered the beginning of the explorative behavior.
- (2)
- Swimming activity:
- (2a)
- Circular clockwise swim: total time spent swimming in the clockwise direction (usually in correspondence of the circular walls) during the observation period.
- (2b)
- Circular counterclockwise swim: total time spent swimming in the counterclockwise direction (usually in correspondence of the circular walls) during the observation period.
- (2c)
- Linear swim was defined by the total time spent swimming in a non-circular direction (e.g., from the north–south direction, east–west direction, etc.; Figure 1).
- (3)
- Freezing behavior was defined by the total time in which fish remained motionless during the observation period. The criteria for defining motionless behavior were identical to the ones used for the latency to explore the environment.
2.3. Statistical Analyses
3. Results
3.1. Latency to Explore the Environment
3.2. Swimming Activity
3.3. Freezing Behavior
3.4. Correlation Between Latency and Freezing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McManus, I.C. The history and geography of human handedness. In Language Lateralization and Psychosis; Cambridge University Press: Cambridge, UK, 2009; pp. 37–57. [Google Scholar]
- Rogers, L.J. Brain lateralization and cognitive capacity. Animals 2021, 11, 1996. [Google Scholar] [CrossRef] [PubMed]
- Bisazza, A.; Lucon-Xiccato, T. Individual Differences in Vertebrate Behavioural Lateralisation: The Role of Genes and Environment. Symmetry 2025, 17, 527. [Google Scholar] [CrossRef]
- Corballis, M.C. The evolution of lateralized brain circuits. Front. Psychol. 2017, 8, 1021. [Google Scholar] [CrossRef] [PubMed]
- Dadda, M.; Zandona, E.; Agrillo, C.; Bisazza, A. The costs of hemispheric specialization in a fish. Proc. R. Soc. B Biol. Sci. 2009, 276, 4399–4407. [Google Scholar] [CrossRef]
- Rogers, L.J.; Zucca, P.; Vallortigara, G. Advantages of having a lateralized brain. Proc. R. Soc. London. Ser. B Biol. Sci. 2004, 271 (Suppl. S6), S420–S422. [Google Scholar] [CrossRef]
- Penry-Williams, I.L.; Brown, C.; Ioannou, C.C. Detecting behavioural lateralisation in Poecilia reticulata is strongly dependent on experimental design. Behav. Ecol. Sociobiol. 2022, 76, 25. [Google Scholar] [CrossRef]
- Roche, D.G.; Amcoff, M.; Morgan, R.; Sundin, J.; Andreassen, A.H.; Finnøen, M.H.; Lawrence, M.J.; Henderson, E.; Norin, T.; Speers-Roesch, B.; et al. Behavioural lateralization in a detour test is not repeatable in fishes. Anim. Behav. 2020, 167, 55–64. [Google Scholar] [CrossRef]
- Miletto Petrazzini, M.E.; Sovrano, V.A.; Vallortigara, G.; Messina, A. Brain and behavioral asymmetry: A lesson from fish. Front. Neuroanat. 2020, 14, 11. [Google Scholar] [CrossRef]
- Lucon-Xiccato, T.; Dadda, M.; Bisazza, A. Vegetation cover induces developmental plasticity of lateralization in tadpoles. Curr. Zool. 2020, 66, 393–399. [Google Scholar] [CrossRef]
- Dadda, M.; Domenichini, A.; Piffer, L.; Argenton, F.; Bisazza, A. Early differences in epithalamic left–right asymmetry influence lateralization and personality of adult zebrafish. Behav. Brain Res. 2010, 206, 208–215. [Google Scholar] [CrossRef]
- Bisazza, A.; Vallortigara, G. Rotational swimming preferences in mosquitofish: Evidence for brain lateralization? Physiol. Behav. 1997, 62, 1405–1407. [Google Scholar] [CrossRef] [PubMed]
- Frasnelli, E.; Vallortigara, G. Individual-level and population-level lateralization: Two sides of the same coin. Symmetry 2018, 10, 739. [Google Scholar] [CrossRef]
- Magnhagen, C.; Wacker, S.; Forsgren, E.; Cats Myhre, L.; Espy, E.; Amundsen, T. Context consistency and seasonal variation in boldness of male two-spotted gobies. PLoS ONE 2014, 9, e93354. [Google Scholar] [CrossRef] [PubMed]
- Vainikka, A.; Tammela, I.; Hyvärinen, P. Does boldness explain vulnerability to angling in Eurasian perch Perca fluviatilis? Curr. Zool. 2016, 62, 109–115. [Google Scholar] [CrossRef]
- Forsatkar, M.N.; Nematollahi, M.A.; Biro, P.A.; Beckmann, C. Individual boldness traits influenced by temperature in male Siamese fighting fish. Physiol. Behav. 2016, 165, 267–272. [Google Scholar] [CrossRef]
- McClure, M.L.; McIntyre, P.B.; McCune, A.R. Natural history of zebrafish (Danio rerio) in India. J. Fish Biol. 2006, 69, 1078–1092. [Google Scholar]
- Walker, I. The food spectrum of the cardinal tetra (Paracheirodon axelrodi) in its natural habitat. Acta Amaz. 2004, 34, 109–115. [Google Scholar] [CrossRef]
- Pecunioso, A.; Aleotti, E.; Agrillo, C. Do body colour and sociability impact scototaxis response of fish? Sci. Rep. 2024, 14, 16717. [Google Scholar] [CrossRef]
- Schnörr, S.J.; Steenbergen, P.J.; Richardson, M.K.; Champagne, D. Measuring thigmotaxis in larval zebrafish. Behav. Brain Res. 2012, 228, 367–374. [Google Scholar] [CrossRef]
- Axling, J.; Vossen, L.; Peterson, E.; Winberg, S. Locomotory activity is more consistent over trials than thigmotaxis and aggressive behaviour in sea-ranched Baltic salmon (Salmo salar L.). Digit. Vetenskapliga Ark. 2022; preprint. [Google Scholar]
- Agrillo, C.; Dadda, M.; Bisazza, A. Escape behaviour elicited by a visual stimulus. A comparison between lateralised and non-lateralised female topminnows. Laterality Asymmetries Body Brain Cogn. 2009, 14, 300–314. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.J.; Thomas, P.; Hart, P.J.; Krause, J. Correlates of boldness in three-spined sticklebacks (Gasterosteus aculeatus). Behav. Ecol. Sociobiol. 2004, 55, 561–568. [Google Scholar] [CrossRef]
- White, J.R.; Meekan, M.G.; McCormick, M.I.; Ferrari, M.C. A comparison of measures of boldness and their relationships to survival in young fish. PLoS ONE 2013, 8, e68900. [Google Scholar] [CrossRef] [PubMed]
- Bisazza, A.; Cantalupo, C.; Capocchiano, M.; Vallortigara, G. Population lateralisation and social behaviour: A study with 16 species of fish. Laterality Asymmetries Body Brain Cogn. 2000, 5, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Hulthén, K.; Heinen-Kay, J.L.; Schmidt, D.A.; Langerhans, R.B. Predation shapes behavioral lateralization: Insights from an adaptive radiation of livebearing fish. Behav. Ecol. 2021, 32, 1321–1329. [Google Scholar] [CrossRef]
Species | Sample Size |
---|---|
Girardinus falcatus | 21 |
Poecilia reticulata | 20 |
Paracheidon axelrodi | 20 |
Kryptoterus bichirris | 23 |
Hyphessobrycon megalopterus | 19 |
Danio rerio | 20 |
Corydoras aeneus | 21 |
Xenopoecilius sarasinorum | 21 |
Multiple Comparisons (LSD) | Dependent Variable | Latency to Explore |
---|---|---|
Species vs. | Species | Sig. |
Girardinus | Paracheirodon | <0.001 |
Kryptopterus | 0.858 | |
Hyphessobrycon | <0.001 | |
Danio | 0.804 | |
Corydoras | 0.214 | |
Poecilia | 0.883 | |
Xenopoecilus | 0.971 | |
Paracheirodon | Kryptopterus | <0.001 |
Hyphessobrycon | 0.209 | |
Danio | <0.001 | |
Corydoras | <0.001 | |
Poecilia | <0.001 | |
Xenopoecilus | <0.001 | |
Kryptopterus | Hyphessobrycon | <0.001 |
Danio | 0.939 | |
Corydoras | 0.148 | |
Poecilia | 0.978 | |
Xenopoecilus | 0.887 | |
Hyphessobrycon | Danio | <0.001 |
Corydoras | <0.001 | |
Poecilia | <0.001 | |
Xenopoecilus | <0.001 | |
Danio | Corydoras | 0.141 |
Poecilia | 0.920 | |
Xenopoecilus | 0.831 | |
Corydoras | Poecilia | 0.170 |
Xenopoecilus | 0.201 | |
Poecilia | Xenopoecilus | 0.911 |
Multiple Comparisons (LSD) | Dependent Variable | Swimming Activity |
---|---|---|
Species vs. | Species | Sig. |
Girardinus | Paracheirodon | 0.026 |
Kryptopterus | <0.001 | |
Hyphessobrycon | <0.001 | |
Danio | 0.105 | |
Corydoras | 0.107 | |
Poecilia | <0.001 | |
Xenopoecilus | 0.009 | |
Paracheirodon | Kryptopterus | 0.248 |
Hyphessobrycon | <0.001 | |
Danio | <0.001 | |
Corydoras | 0.517 | |
Poecilia | 0.001 | |
Xenopoecilus | 0.727 | |
Kryptopterus | Hyphessobrycon | <0.001 |
Danio | <0.001 | |
Corydoras | 0.067 | |
Poecilia | 0.025 | |
Xenopoecilus | 0.418 | |
Hyphessobrycon | Danio | <0.001 |
Corydoras | <0.001 | |
Poecilia | 0.005 | |
Xenopoecilus | <0.001 | |
Danio | Corydoras | 0.002 |
Poecilia | <0.001 | |
Xenopoecilus | <0.001 | |
Corydoras | Poecilia | <0.001 |
Xenopoecilus | 0.313 | |
Poecilia | Xenopoecilus | 0.003 |
Species | Prop. of Clockwise Swim (Mean ± Std. Dev) | t-Tests, p-Value and Cohen’s d | One Sample Bayes Factor |
---|---|---|---|
Girardinus falcatus | 0.548 ± 0.190 | t(20) = 1.172, p = 0.255, d= 0.256 | 3.153 |
Poecilia reticulata | 0.437 ± 0.141 | t(19) = −2.007, p = 0.059, d = −0.449 | 1.006 |
Paracheidon axelrodi | 0.535 ± 0.191 | t(17) = 0.778, p = 0.447, d= 0.183 | 4.193 |
Kryptoterus bichirris | 0.504 ± 0.057 | t(22) = 0.340, p = 0.737 d= 0.071 | 5.913 |
Hyphessobrycon megalopterus | 0.559 ± 0.235 | t(11) = 0.862, p = 0.407, d= 0.249 | 3.304 |
Danio rerio | 0.543 ± 0.129 | t(19) = 1.488, p = 0.153, d= 0.333 | 2.132 |
Corydoras aeneus | 0.478 ± 0.076 | t(20) = −1.302, p = 0.208, d= −0.284 | 2.729 |
Xenopoecilius sarasinorum | 0.437 ± 0.044 | t(20) = −1.414, p = 0.173, d= −0.309 | 2.386 |
Multiple Comparisons (LSD) | Dependent Variable | Freezing |
---|---|---|
Species vs. | Species | Sig. |
Girardinus | Paracheirodon | 0.030 |
Kryptopterus | <0.001 | |
Hyphessobrycon | <0.001 | |
Danio | 0.112 | |
Corydoras | 0.102 | |
Poecilia | <0.001 | |
Xenopoecilus | 0.009 | |
Paracheirodon | Kryptopterus | 0.218 |
Hyphessobrycon | <0.001 | |
Danio | <0.001 | |
Corydoras | 0.568 | |
Poecilia | <0.001 | |
Xenopoecilus | 0.666 | |
Kryptopterus | Hyphessobrycon | <0.001 |
Danio | <0.001 | |
Corydoras | 0.067 | |
Poecilia | 0.025 | |
Xenopoecilus | 0.422 | |
Hyphessobrycon | Danio | <0.001 |
Corydoras | <0.001 | |
Poecilia | 0.005 | |
Xenopoecilus | <0.001 | |
Danio | Corydoras | 0.002 |
Poecilia | <0.001 | |
Xenopoecilus | <0.001 | |
Corydoras | Poecilia | <0.001 |
Xenopoecilus | 0.310 | |
Poecilia | Xenopoecilus | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecunioso, A.; Rotondi, E.; Agrillo, C. Behavioral Lateralization and Boldness Traits Across Eight Teleost Fish Species. Symmetry 2025, 17, 1030. https://doi.org/10.3390/sym17071030
Pecunioso A, Rotondi E, Agrillo C. Behavioral Lateralization and Boldness Traits Across Eight Teleost Fish Species. Symmetry. 2025; 17(7):1030. https://doi.org/10.3390/sym17071030
Chicago/Turabian StylePecunioso, Alessandra, Elisa Rotondi, and Christian Agrillo. 2025. "Behavioral Lateralization and Boldness Traits Across Eight Teleost Fish Species" Symmetry 17, no. 7: 1030. https://doi.org/10.3390/sym17071030
APA StylePecunioso, A., Rotondi, E., & Agrillo, C. (2025). Behavioral Lateralization and Boldness Traits Across Eight Teleost Fish Species. Symmetry, 17(7), 1030. https://doi.org/10.3390/sym17071030