Existence of Blow-Up Solution to the Cauchy Problem of Inhomogeneous Damped Wave Equation
Abstract
1. Introduction
- (1) , .
- (2) , , .
- (3) , when or .
- (1) , , when or .
- (2) , , when or .
- (3) , when or .
2. Preliminaries
3. Proof of Theorem 1
4. Proof of Theorem 2
5. Proof of Theorem 3
6. Proof of Theorem 4
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, N.A.; Liu, J.L.; Zhao, J.L. Blow-up for initial boundary value problem of wave equation with a nonlinear memory in 1-D. Chin. Ann. Math. Ser. B 2017, 38, 827–838. [Google Scholar] [CrossRef]
- Lai, N.A.; Schiavone, N.M. Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture. Math. Z. 2022, 301, 3369–3393. [Google Scholar] [CrossRef]
- Strauss, W.A. Nonlinear scattering theory at low energy. J. Funct. Anal. 1981, 41, 110–133. [Google Scholar] [CrossRef]
- Yordanov, B.; Zhang, Q.S. Finite time blow-up for critical wave equations in high dimensions. J. Funct. Anal. 2006, 231, 361–374. [Google Scholar] [CrossRef]
- Hidano, K.; Yokoyama, K. Global existence and blow-up for systems of nonlinear wave equations related to the weak null condition. Discret. Contin. Dyn. Syst. 2022, 42, 4385–4414. [Google Scholar] [CrossRef]
- Ikeda, M.; Jleli, M.; Samet, B. On the existence and non-existence of global solutions for certain semilinear exterior problems with nontrivial Robin boundary conditions. J. Differ. Equ. 2020, 269, 563–594. [Google Scholar] [CrossRef]
- John, F. Blow-up of the solutions of nonlinear wave equations in three space dimensions. Manuscr. Math. 1979, 28, 235–268. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. New blow-up results for nonlinear boundary value problems in exterior domains. Nonlinear Anal. 2019, 178, 348–365. [Google Scholar] [CrossRef]
- Kido, R.; Sasaki, T.; Takamatsu, S.; Takamura, H. The generalized combined effect for one dimensional wave equations with semilinear terms including product type. J. Differ. Equ. 2024, 403, 576–618. [Google Scholar] [CrossRef]
- Chen, W.H.; Palmieri, A. Blow-up result for a semilinear wave equation with a nonlinear memory term. Ann. Univ. Ferrara 2021, 43, 77–97. [Google Scholar]
- Dai, W.; Fang, D.Y.; Wang, C.B. Long time existence for semilinear wave equations with the inverse square potential. J. Differ. Equ. 2022, 309, 98–141. [Google Scholar] [CrossRef]
- Glassey, R.T. Finite time blow-up for solutions of nonlinear wave equations. Math. Z. 1981, 177, 323–340. [Google Scholar] [CrossRef]
- Hamouda, M.; Hamza, M.A.; Palmieri, A. A note on the non-existence of global solutions to the semilinear wave equation with nonlinearity of derivative type in the generalized Einstein-de Sitter spacetime. Commun. Pure Appl. Anal. 2021, 20, 3703–3721. [Google Scholar] [CrossRef]
- Glassey, R.T. Existence in the large for Δu = F(u) in two space dimensions. Math. Z. 1981, 178, 233–261. [Google Scholar] [CrossRef]
- Lai, N.A.; Liu, M.Y.; Wakasa, K.; Wang, C.B. Lifespan estimates for two dimensional semilinear wave equations in asymptotically Euclidean exterior domains. J. Funct. Anal. 2021, 281, 109253. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, W. Blow-up of the solutions to semilinear wave equations with variable coefficients and boundary. J. Math. Anal. Appl. 2011, 374, 585–601. [Google Scholar] [CrossRef]
- Kitamura, S.; Morisawa, K.; Takamura, H. The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension. J. Differ. Equ. 2022, 307, 486–516. [Google Scholar] [CrossRef]
- Haruyama, Y.; Takamura, H. Blow-up of classical solutions of quasilinear wave equations in one space dimension. Nonlinear Anal. Real World Appl. 2025, 81, 104212. [Google Scholar] [CrossRef]
- Ding, B.B.; Lu, Y.; Yin, H.C. On the critical exponent pc of the 3D quasilinear wave equation with short pulse initial data. I, global existence. J. Differ. Equ. 2024, 385, 183–253. [Google Scholar] [CrossRef]
- Hamza, M.A.; Zaag, H. A better bound on blow-up rate for the super-conformal semilinear wave equation. J. Funct. Anal. 2025, 288, 110862. [Google Scholar] [CrossRef]
- Lei, Q.; Yang, H. Global existence and blow-up for semilinear wave equations with variable coefficients. Chin. Ann. Math. Ser. B 2018, 39, 643–664. [Google Scholar] [CrossRef]
- Ming, S.; Yang, H.; Fan, X.M.; Yao, J.Y. Blow-up and lifespan estimates of the solutions to semilinear Moore-Gibson-Thompson equations. Nonlinear Anal. Real World Appl. 2021, 62, 103360. [Google Scholar] [CrossRef]
- Zhou, Y. Blow-up of classical solutions to □u = |u|1+α in three space dimensions. J. Partial Differ. Equ. 1992, 5, 21–32. [Google Scholar]
- Zhou, Y. Blow-up of the solutions to semilinear wave equations with critical exponent in high dimensions. Chin. Ann. Math. Ser. B 2007, 28, 205–212. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, Y.B. Global existence of the solutions to a one dimensional nonlinear wave equation. J. Math. Anal. Appl. 2025, 546, 129188. [Google Scholar] [CrossRef]
- Chen, W.H. Blow-up and lifespan estimates for Nakao’s type problem with nonlinearities of derivative type. Math. Methods Appl. Sci. 2022, 45, 5988–6004. [Google Scholar] [CrossRef]
- Chen, W.H.; Fino, A.Z. Blow-up of the solutions to semilinear strongly damped wave equations with different nonlinear terms in an exterior domain. Math. Methods Appl. Sci. 2021, 44, 6787–6807. [Google Scholar] [CrossRef]
- Discacciati, M.; Garetto, C.; Loizou, C. Inhomogeneous wave equation with t-dependent singular coefficients. J. Differ. Equ. 2022, 319, 131–185. [Google Scholar] [CrossRef]
- Fujiwara, K.; Georgiev, V. Lifespan estimates for 1d damped wave equation with zero moment initial data. J. Math. Anal. Appl. 2024, 535, 128107. [Google Scholar] [CrossRef]
- Hamouda, M.; Hamza, M.A. Improvement on the blow-up of the wave equation with the scale invariant damping and combined nonlinearities. Nonlinear Anal. Real World Appl. 2021, 59, 103275. [Google Scholar] [CrossRef]
- Ikeda, M.; Tanaka, T.; Wakasa, K. Critical exponent for the wave equation with a time dependent scale invariant damping and a cubic convolution. J. Differ. Equ. 2021, 270, 916–946. [Google Scholar] [CrossRef]
- Ikeda, M.; Tu, Z.H.; Wakasa, K. Small data blow-up of semilinear wave equation with scattering dissipation and time dependent mass. Evol. Equ. Control Theory 2022, 11, 515–536. [Google Scholar] [CrossRef]
- Kagei, Y.; Takeda, H. Smoothing effect and large time behavior of the solutions to nonlinear elastic wave equations with viscoelastic term. Nonlinear Anal. 2022, 219, 112826. [Google Scholar] [CrossRef]
- Kagei, Y.; Takeda, H. Decay estimates of the solutions to nonlinear elastic wave equations with viscoelastic terms in the framework of Lp-Sobolev spaces. J. Math. Anal. Appl. 2023, 519, 126801. [Google Scholar] [CrossRef]
- Liao, M.L. The lifespan of the solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evol. Equ. Control Theory 2022, 11, 781–792. [Google Scholar] [CrossRef]
- Liu, M.Y.; Wang, C.B. Blow-up for small amplitude semilinear wave equations with mixed nonlinearities on asymptotically Euclidean manifolds. J. Differ. Equ. 2020, 269, 8573–8596. [Google Scholar] [CrossRef]
- Ming, S.; Lai, S.Y.; Fan, X.M. Lifespan estimates of the solutions to quasilinear wave equations with scattering damping. J. Math. Anal. Appl. 2020, 492, 124441. [Google Scholar] [CrossRef]
- Ming, S.; Lai, S.Y.; Fan, X.M. Blow-up for a coupled system of semilinear wave equations with scattering dampings and combined nonlinearities. Appl. Anal. 2022, 101, 2996–3016. [Google Scholar] [CrossRef]
- Todorova, G.; Yordanov, B. Critical exponent for a nonlinear wave equation with damping. J. Differ. Equ. 2001, 174, 464–489. [Google Scholar] [CrossRef]
- Yang, H.; Han, Y.Z. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evol. Equ. Control Theory 2022, 11, 635–648. [Google Scholar] [CrossRef]
- Zhang, Q.S. A blow-up result for a nonlinear wave equation with damping: The critical case. Comptes Rendus Acad. Sci. Math. 2001, 333, 109–114. [Google Scholar] [CrossRef]
- Zhou, Y. A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in . Appl. Math. Lett. 2005, 18, 281–286. [Google Scholar] [CrossRef]
- Fujita, H. On the blowing up of the solutions of the Cauchy problem for ut = Δu + u1+α. J. Fac. Sci. Univ. Tokyo Sect. I 1966, 13, 109–124. [Google Scholar]
- Chen, W.H.; Reissig, M. On the critical exponent and sharp lifespan estimates for semilinear damped wave equations with data from Sobolev spaces of negative order. J. Evol. Equ. 2023, 23, 1–21. [Google Scholar] [CrossRef]
- Lai, N.A.; Yin, S.L. Finite time blow-up for a kind of initial boundary value problem of semilinear damped wave equation. Math. Methods Appl. Sci. 2017, 40, 1223–1230. [Google Scholar] [CrossRef]
- Lian, W.; Xu, R.Z. Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. 2020, 9, 613–632. [Google Scholar] [CrossRef]
- Lai, N.A.; Takamura, H. Non-existence of global solutions of wave equations with weak time dependent damping and combined nonlinearity. Nonlinear Anal. Real World Appl. 2019, 45, 83–96. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. New critical behaviors for semilinear wave equations and systems with linear damping terms. Math. Methods Appl. Sci. 2020, 43, 1–11. [Google Scholar] [CrossRef]
- Samet, B. First and second critical exponents for an inhomogeneous damped wave equation with mixed nonlinearities. AIMS Math. 2020, 5, 7055–7070. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B.; Vetro, C. A general non-existence result for inhomogeneous semilinear wave equations with double damping and potential terms. Chaos Solitons Fractals 2021, 144, 110673. [Google Scholar] [CrossRef]
- Han, J.B.; Xu, R.Z.; Yang, C. Continuous dependence on initial data and high energy blowup time estimate for porous elastic system. Commun. Anal. Mech. 2023, 15, 214–244. [Google Scholar] [CrossRef]
- Pang, Y.; Qiu, X.T.; Xu, R.Z.; Yang, Y.B. The Cauchy problem for general nonlinear wave equations with doubly dispersive. Commun. Anal. Mech. 2024, 16, 416–430. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. Finite time blow-up for a nonlocal in time nonlinear heat equation in an exterior domain. Appl. Math. Lett. 2020, 99, 105985. [Google Scholar] [CrossRef]
- Jleli, M.; Kawakami, T.; Samet, B. Critical behavior for a semilinear parabolic equation with forcing term depending on time and space. J. Math. Anal. Appl. 2020, 486, 123931. [Google Scholar] [CrossRef]
- Alqahtani, A.; Jleli, M.; Samet, B. Finite time blow-up for inhomogeneous parabolic equations with nonlinear memory. Complex Var. Elliptic Equ. 2021, 66, 84–93. [Google Scholar] [CrossRef]
- Borikhanov, M.B.; Torebek, B.T. Non-existence of global solutions for an inhomogeneous pseudo-parabolic equation. Appl. Math. Lett. 2022, 134, 108366. [Google Scholar] [CrossRef]
- Fino, A.Z.; Jleli, M.; Samet, B. Blow-up and global existence for semilinear parabolic systems with space time forcing terms. Chaos Solitons Fractals 2021, 147, 110982. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B.; Souplet, P. Discontinuous critical Fujita exponents for the heat equation with combined nonlinearities. Proc. Am. Math. Soc. 2020, 148, 2579–2593. [Google Scholar] [CrossRef]
- Lian, W.; Wang, J.; Xu, R.Z. Global existence and blow-up of the solutions for pseudo-parabolic equation with singular potential. J. Differ. Equ. 2020, 269, 4914–4959. [Google Scholar] [CrossRef]
- Zhang, Q.S. Blow-up and global existence of the solutions to an inhomogeneous parabolic system. J. Differ. Equ. 1998, 147, 155–183. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, J.X. Small perturbation of a semilinear pseudo-parabolic equation. Discret. Contin. Dyn. Syst. 2016, 36, 631–642. [Google Scholar] [CrossRef]
- Zeng, X. The critical exponents for the quasi-linear parabolic equations with the inhomogeneous terms. J. Math. Anal. Appl. 2007, 332, 1408–1424. [Google Scholar] [CrossRef]
- Zhang, Q.S. A new critical behavior for nonlinear wave equations. J. Comput. Appl. Math. 2000, 2, 277–292. [Google Scholar] [CrossRef]
- Cazenave, T.; Dickstein, F.; Weissler, F.B. An equation whose Fujita critical exponent is not given by scaling. Nonlinear Anal. 2008, 68, 862–874. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ming, S.; Du, J.; Du, B. Existence of Blow-Up Solution to the Cauchy Problem of Inhomogeneous Damped Wave Equation. Symmetry 2025, 17, 1009. https://doi.org/10.3390/sym17071009
Ming S, Du J, Du B. Existence of Blow-Up Solution to the Cauchy Problem of Inhomogeneous Damped Wave Equation. Symmetry. 2025; 17(7):1009. https://doi.org/10.3390/sym17071009
Chicago/Turabian StyleMing, Sen, Jiayi Du, and Bo Du. 2025. "Existence of Blow-Up Solution to the Cauchy Problem of Inhomogeneous Damped Wave Equation" Symmetry 17, no. 7: 1009. https://doi.org/10.3390/sym17071009
APA StyleMing, S., Du, J., & Du, B. (2025). Existence of Blow-Up Solution to the Cauchy Problem of Inhomogeneous Damped Wave Equation. Symmetry, 17(7), 1009. https://doi.org/10.3390/sym17071009