Two-Step Two-Photon Absorption Dynamics in π-π Conjugated Carbazole-Phthalocyanine/Graphene Quantum Dot Hybrids Under Picosecond Pulse Excitation
Abstract
:1. Introduction
2. Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nwaji, N.; Dingiswayo, S.; Mack, J.; Nyokong, T. Photophysical and Enhanced Nonlinear Optical Response in Asymmetric Benzothiazole Substituted Phthalocyanine Covalently Linked to Semiconductor Quantum Dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Zyss, J.; Chemla, D.S. Quadratic nonlinear optics and optimization of the second-order nonlinear optical response of molecular crystals. In Nonlinear Optical Properties of Organic Molecules and Crystals; Chemla, D.S., Zyss, J., Eds.; Chapter II-1; Academic Press: Cambridge, MA, USA, 1987; pp. 23–191. [Google Scholar]
- Nalwa, H.S.; Miyata, S. Nonlinear Optics of Organic Molecules and Polymers; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Torres-Torres, C.; García-Beltrán, G. Optical Nonlinearities in Nanostructured Systems; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Gnawali, S.; Apalkov, V. High-order harmonic generation in graphene quantum dots in the field of an elliptically polarized pulse. Phys. Rev. B 2024, 109, 165121. [Google Scholar] [CrossRef]
- Xu, Y.F.; Liu, Z.B.; Zhang, X.L.; Wang, Y.; Tian, J.G.; Huang, Y.; Ma, Y.F.; Zhang, X.Y.; Chen, Y.S. A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Adv. Mater. 2009, 21, 1275–1279. [Google Scholar] [CrossRef]
- Ren, J.S.; Yang, P.Y.; Wang, A.J.; Zhu, W.H.; Shang, D.H.; Song, Y.L. Synergistic promoted nonlinear optical effects in polyaniline nanohybrids covalently functionalized with tin porphyrin. Colloids Surfaces Physicochem. Eng. Asp. 2022, 650, 129588. [Google Scholar] [CrossRef]
- Li, D.J.; Li, Q.H.; Gu, Z.G.; Zhang, J. Oriented Assembly of 2D Metal-Pyridylporphyrinic Framework Films for Giant Nonlinear Optical Limiting. Nano Lett. 2021, 21, 10012–10018. [Google Scholar] [CrossRef]
- Dini, D.; Calvete, M.J.F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233. [Google Scholar] [CrossRef]
- Di Zazzo, L.; Magna, G.; Lucentini, M.; Stefanelli, M.; Paolesse, R.; Di Natale, C. Sensor-Embedded Face Masks for Detection of Volatiles in Breath: A Proof of Concept Study. Chemosensors 2021, 9, 356. [Google Scholar] [CrossRef]
- Thanopulos, I.; Paspalakis, E.; Yannopapas, V. Optical switching of electric charge transfer pathways in porphyrin: A light-controlled nanoscale current router. Nanotechnology 2008, 19, 445202. [Google Scholar] [CrossRef] [PubMed]
- Szyszko, B. Phenanthrene-Embedded Carbaporphyrinoids and Related Systems: From Ligands to Cages and Molecular Switches. Eur. J. Org. Chem. 2022, 30, e202200714. [Google Scholar] [CrossRef]
- Liu, W.; Yang, S.; Li, J.T.; Su, G.R.; Ren, J.C. One molecule, two states: Single molecular switch on metallic electrodes. Eur. J. Org. Chem. 2020, 11, e1511. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Q.; Rončević, I.; Christensen, K.E.; Anderson, H.L. Anderson Harry Laurence. Anthracene-Porphyrin Nanoribbons. Angew. Chem. Int. Ed. 2023, 135, e202307035. [Google Scholar] [CrossRef]
- Durantini, J.E.; Rubio, R.; Solis, C.; Macor, L.; Morales, G.M.; Mangione, M.I.; Heredia, D.A.; Durantini, E.N.; Otero, L.; Gervaldo, M. Electrosynthesis of a hyperbranched dendrimeric porphyrin polymer: Optical and electronic characterization as a material for bifunctional electrochromic supercapacitors. Sustain. Energy Fuels 2020, 4, 6125–6140. [Google Scholar] [CrossRef]
- Gavrilyuk, S.; Polyutov, S.; Jha, P.C.; Rinkeviciu, Z.; Ågren, H.; Gel’mukhanov, F. Many-Photon Dynamics of Photobleaching. J. Phys. Chem. A 2007, 111, 11961–11975. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.; Bertlisson, K.; Lindgren, M. Simulation of beam propagation with time-dependent nonlinear processes in optical limiting applications. Synth. Met. 2002, 127, 147–150. [Google Scholar] [CrossRef]
- Polyzos, I.; Fakis, G.T.M.; Giannetas, V.; Persephonis, P.; Mikroyannidis, J. Two-photon absorption properties of novel organic materials for three-dimensional optical memories. Chem. Phys. Lett. 2003, 369, 264–268. [Google Scholar] [CrossRef]
- Blau, W.; Byrne, H.; Dennis, W.M.; Dennis, J.M.; Kelly, J.M. Reverse saturable absorption in tetraphenylporphyrins. Opt. Commun. 1985, 56, 25–29. [Google Scholar] [CrossRef]
- Dini, D.; Hanack, M.; Meneghetti, M. Nonlinear Optical Properties of Tetrapyrazinoporphyrazinato Indium Chloride Complexes Due to Excited-State Absorption Processes. J. Phys. Chem. B 2005, 109, 12691–12696. [Google Scholar] [CrossRef]
- Kadish, K.M.; Smith, K.M.; Guilard, R. (Eds.) Handbook of Porphyrin Science; World Scientific Publishing: Singapore, 2010; Volume 3, pp. 1–323. [Google Scholar]
- Lukyanets, E.A.; Nemykin, V.N. The key role of peripheral substituents in the chemistry of phthalocyanines and their analogs. J. Porphyrins Phthalocyanines 2010, 14, 1–40. [Google Scholar] [CrossRef]
- Nemykin, V.N.; Lukyanets, E.A. Synthesis of substituted phthalocyanines. Arkivoc 2010, 136–208. [Google Scholar] [CrossRef]
- Josefsen, L.B.; Boyle, R.W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012, 9, 916–966. [Google Scholar] [CrossRef]
- Taratula, O.; Schumann, C.; Naleway, M.A.; Pang, A.J.; Chon, K.J.; Taratula, O. A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol. Pharm. 2013, 10, 3946–3958. [Google Scholar] [CrossRef] [PubMed]
- Ince, M.; Yum, J.-H.; Kim, Y.; Mathew, S.; Grätzel, M.; Torres, T.; Nazeeruddin, M.K. Molecular Engineering of Phthalocyanine Sensitizers for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 17166–17170. [Google Scholar] [CrossRef]
- Singh, V.P.; Singh, R.S.; Parthasarathy, B.; Aguilera, A.; Anthony, J.; Payne, M. Copper-phthalocyanine-based organic solar cells with high open-circuit voltage. Appl. Phys. Lett. 2005, 86, 082106. [Google Scholar] [CrossRef]
- Yuen, A.P.; Jovanovic, S.M.; Hor, A.M.; Klenkler, R.A.; Devenyi, G.A.; Loutfy, R.O.; Preston, J.S. Photovoltaic properties of M-phthalocyanine/fullerene organic solar cells. Sol. Energy 2012, 86, 1683–1688. [Google Scholar] [CrossRef]
- Walter, M.G.; Rudine, A.B.; Wamser, C.C. Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porphyrins Phthalocyanines 2010, 14, 759–792. [Google Scholar] [CrossRef]
- Bae, Y.J.; Lee, N.J.; Kim, T.H.; Cho, H.; Lee, C.; Fleet, L.; Hirohata, A. Growth and characterization of thin Cu-phthalocyanine films on MgO(001) layer for organic light-emitting diodes. Nanoscale Res. Lett. 2012, 7, 650. [Google Scholar] [CrossRef]
- Kao, P.-C.; Chu, S.-Y.; Liu, S.-J.; You, Z.-X.; Chuang, C.-A. Improved Performance of Organic Light-Emitting Diodes Using a Metal-Phthalocyanine Hole-Injection Layer. J. Electrochem. Soc. 2006, 153, H122–H126. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Xu, J.-J.; Lin, Y.-W.; Chen, Q.; Shan, H.-Q.; Yan, Y.; Roy, V.A.L.; Xu, Z.-X. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes. AIP Adv. 2015, 5, 107205. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Chen, Q.; Lin, Y.; Shan, H.; Roy, V.A.L.; Xu, Z. Enhanced lifetime of organic light-emitting diodes using soluble tetraalkyl-substituted copper phthalocyanines as anode buffer layers. J. Mater. Chem. C 2016, 4, 7377. [Google Scholar] [CrossRef]
- Nwaji, N.; Achadu, O.J.; Nyokong, T. Photo-induced resonance energy transfer and nonlinear optical response in ball-type phthalocyanine conjugated to semiconductor and graphene quantum dots. New J. Chem. 2018, 42, 6040–6050. [Google Scholar] [CrossRef]
- Bankole, O.M.; Achadu, O.J.; Nyokong, T. Nonlinear interactions of zinc phthalocyanine- graphene quantum dots nanocomposites: Investigation of effects of surface functionalization with heteroatoms. J. Fluoresc. 2017, 27, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 2012, 5, 8869–8890. [Google Scholar] [CrossRef]
- Majeed, S.A.; Nwaji, N.; Mack, J.; Nyokong, T.; Makhseed, S. Nonlinear optical responses of carbazole-substituted phthalocyanines conjugated to graphene quantum dots and in thin films. J. Lumin. 2019, 213, 88–97. [Google Scholar] [CrossRef]
- Majeed, S.A.; Ghazal, B.; Nevonen, D.E.; Goff, P.C.; Blank, D.A.; Nemykin, V.N.; Makhseed, S. Evaluation of the Intramolecular Charge-Transfer Properties in Solvatochromic and Electrochromic Zinc Octa(carbazolyl)phthalocyanines. Inorg. Chem. 2017, 56, 11640–11653. [Google Scholar] [CrossRef]
- De Paoli, V.M.; De Paoli, S.H.; Borissevitch, I.E.; Tedesco, A.C. Fluorescence lifetime and quantum yield of TMPyPH2 associated with micelles and DNA. J. Alloys Compd. 2002, 344, 27–31. [Google Scholar] [CrossRef]
- Wei, T.H.; Huang, T.H.; Hu, J.K. Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses. J. Chem. Phys. 2002, 116, 2536. [Google Scholar] [CrossRef]
- Goncalves, P.J.; Correa, D.S.; Franzen, P.L.; De Boni, L.; Almeida, L.M.; Mendonca, C.R.; Borissevitch, I.E.; Zilio, S.C. Effect of interaction with micelles on the excited-state optical properties of zinc porphyrins and J-aggregates formation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 112, 309. [Google Scholar] [CrossRef]
- Gonçalves, P.J.; Bezerra, F.C.; Almeida, L.M.; Alonso, L.; Souza, G.R.; Alonso, A.; Zilio, S.C.; Borissevitch, I.E. Effects of bovine serum albumin (BSA) on the excited-state properties of meso-tetrakis(sulfonatophenyl) porphyrin (TPPS4). Eur. Biophys. J. 2019, 48, 721–729. [Google Scholar] [CrossRef]
- Gonçalves, P.J.; De Boni, L.; Neto, N.B.; Rodrigues, J.J., Jr.; Zílio, S.C.; Borissevitch, I.E. Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin. Chem. Phys. Lett. 2005, 407, 236–241. [Google Scholar] [CrossRef]
- Hendow, S.T.; Shakir, S.A. Recursive numerical solution for nonlinear wave propagation in fibers and cylindrically symmetric systems. Appl. Opt. 1986, 25, 1759. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Rao, S.V.; Rao, D.N.; Akkara, J.A.; DeCristofano, B.S.; Rao, D.V.G.L.N. Dispersion studies of non-linear absorption in C60 using Z-scan. Chem. Phys. Lett. 1998, 297, 491–498. [Google Scholar] [CrossRef]
- Neto, N.M.B.; Oliveira, S.L.; Misoguti, L.; Mendonça, C.R.; Gonçalves, P.J.; Borissevitch, I.E.; Dinelli, L.R.; Romualdo, L.L.; Batista, A.A.; Zilio, S.C. Singlet excited state absorption of porphyrin molecules for pico- and femtosecond optical limiting application. J. Appl. Phys. 2006, 99, 123103. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Gavrilyuk, S.; Liu, J.-C.; Wang, C.-K.; Ågren, H.; Gel’mukhanov, F. Optical limiting and pulse reshaping of picosecond pulse trains by fullerene C60. J. Electron. Spectrosc. Relat. Phenom 2009, 174, 125–130. [Google Scholar] [CrossRef]
- Gel’mukhanov, H.F. Ågren. Resonant X-ray Raman scattering. Phys. Rep. 1999, 312, 87–330. [Google Scholar] [CrossRef]
- Gavrilyuk, S.; Liu, J.C.; Kamada, K.; Ågren, F.H. Gel’mukhanov. Optical limiting for microsecond pulses. J. Chem. Phys. 2009, 130, 054114. [Google Scholar] [CrossRef]
- Goncalves, P.J.; Boni, L.D.; Borissevitch, I.E.; Zilio, S.C. Excited State Dynamics of meso-Tetra(sulphonatophenyl) Metalloporphyrins. J. Phys. Chem. A 2008, 112, 6522–6526. [Google Scholar] [CrossRef]
Compounds | (ns) | (μs) | (ns) | ||
---|---|---|---|---|---|
2 | 118 | ||||
4 | 252 | ||||
2-GQDs | 110 | ||||
4-GQDs | 184 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Q.; Sun, E.; Xu, Y. Two-Step Two-Photon Absorption Dynamics in π-π Conjugated Carbazole-Phthalocyanine/Graphene Quantum Dot Hybrids Under Picosecond Pulse Excitation. Symmetry 2025, 17, 949. https://doi.org/10.3390/sym17060949
Miao Q, Sun E, Xu Y. Two-Step Two-Photon Absorption Dynamics in π-π Conjugated Carbazole-Phthalocyanine/Graphene Quantum Dot Hybrids Under Picosecond Pulse Excitation. Symmetry. 2025; 17(6):949. https://doi.org/10.3390/sym17060949
Chicago/Turabian StyleMiao, Quan, Erping Sun, and Yan Xu. 2025. "Two-Step Two-Photon Absorption Dynamics in π-π Conjugated Carbazole-Phthalocyanine/Graphene Quantum Dot Hybrids Under Picosecond Pulse Excitation" Symmetry 17, no. 6: 949. https://doi.org/10.3390/sym17060949
APA StyleMiao, Q., Sun, E., & Xu, Y. (2025). Two-Step Two-Photon Absorption Dynamics in π-π Conjugated Carbazole-Phthalocyanine/Graphene Quantum Dot Hybrids Under Picosecond Pulse Excitation. Symmetry, 17(6), 949. https://doi.org/10.3390/sym17060949