Starlike Functions with Respect to (ℓ, κ)-Symmetric Points Associated with the Vertical Domain
Abstract
:1. Introduction and Definition
- 1.
- Letting , , , , , and in Definition 1, the will reduce to the which satisfies the conditionThe class was studied by Sim and Kwon ([32], Definition 1).
- 2.
- Letting , , , , , , , and in Definition 1, the will reduce to the which satisfies the condition
- 3.
- Letting and in Definition 1, the will reduce to the which satisfies the conditionThe class is closely related to the subclass studied by Breaz et al. [31].
2. Integral Representations
3. Coefficient Estimates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, M.; Jain, R. A note on a generalized M-series as a special function of fractional calculus. Fract. Calc. Appl. Anal. 2009, 12, 449–452. [Google Scholar]
- Srivastava, H.M. Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators. Appl. Anal. Discrete Math. 2007, 1, 56–71. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Ellis Horwood Series: Mathematics and its Applications, Horwood, Chichester. In Multiple Gaussian Hypergeometric Series; Halsted Press: New York, NY, USA, 1985. [Google Scholar]
- Srivastava, H.M.; Gupta, K.C.; Goyal, S.P. The H-Functions of One and Two Variables; South Asian Pub.: New Delhi, India, 1982. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Lin, S.-D.; Srivastava, H.M. Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Mohankumar, D.; Breaz, D. Properties of Bazilevič functions involving q-analogue of the generalized M-series. Eur. J. Pure Appl. Math. 2025, 18, 5841. [Google Scholar]
- Elhaddad, S.; Aldweby, H.; Darus, M. On certain sub-classes of analytic functions involving differential operator. Jnanabha 2018, 1, 55–64. [Google Scholar]
- Mashwan, W.K.; Ahmad, B.; Khan, M.G.; Mustafa, S.; Arjika, S.; Khan, B. Pascu-Type analytic functions by using Mittag-Leffler functions in Janowski domain. Math. Probl. Eng. 2021, 2021, 1209871. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
- Carathéodory, C. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 1907, 64, 95–115. [Google Scholar] [CrossRef]
- Thomas, D.K.; Tuneski, N.; Vasudevarao, A. De Gruyter Studies in Mathematics. In Univalent Functions; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Graham, I.R.; Kohr, G. Monographs and Textbooks in Pure and Applied Mathematics. In Geometric Function Theory in One and Higher Dimensions; Dekker: New York, NY, USA, 2003. [Google Scholar]
- Sathish Srinivasan, R.; Ezhilarasi, R.; Karthikeyan, K.R.; Sudharsan, T.V. Coefficient bounds for certain subclasses of quasi-convex functions associated with Carlson-Shaffer operator. J. Mech. Contin. Math. Sci. 2025, 20, 198–207. [Google Scholar] [CrossRef]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Wang, Z.G.; Gao, C.Y.; Yuan, S.-M. On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points. J. Math. Anal. Appl. 2006, 322, 97–106. [Google Scholar] [CrossRef]
- Yuan, S.-M.; Liu, Z.M. Some properties of α-convex and α-quasiconvex functions with respect to n-symmetric points. Appl. Math. Comput. 2007, 188, 1142–1150. [Google Scholar] [CrossRef]
- Karthikeyan, K.R. Some classes of analytic functions with respect to (j, k)-symmetric points. ROMAI J. 2013, 9, 51–60. [Google Scholar]
- Liczberski, P.; Połubiński, J. On (j, k)-symmetrical functions. Math. Bohem. 1995, 120, 13–28. [Google Scholar] [CrossRef]
- Gochhayat, P.; Prajapati, A. Geometric properties on (j, k)-symmetric functions related to starlike and convex function. Commun. Korean Math. Soc. 2022, 37, 455–472. [Google Scholar]
- Srivastava, H.M.; Bukhari, S.Z.H.; Nazir, M. A subclass of α-convex functions with respect to (2j, k)-symmetric conjugate points. Bull. Iranian Math. Soc. 2018, 44, 1227–1242. [Google Scholar] [CrossRef]
- Hussain, S.; Alamri, M.A.; Darus, M. On a new class of (j, i)-symmetric function on conic regions. J. Nonlinear Sci. Appl. 2017, 10, 4628–4637. [Google Scholar] [CrossRef]
- Mahmood, S.; Khan, I.; Srivastava, H.M.; Malik, S.N. Inclusion relations for certain families of integral operators associated with conic regions. J. Inequal. Appl. 2019, 59, 1–11. [Google Scholar] [CrossRef]
- Aracı, S.; Karthikeyan, K.R.; Murugusundaramoorthy, G.; Khan, B. Φ-like analytic functions associated with a vertical domain. Math. Inequal. Appl. 2023, 26, 935–949. [Google Scholar]
- Kargar, R.; Ebadian, A.; Sokół, J. Radius problems for some subclasses of analytic functions. Complex Anal. Oper. Theory 2017, 11, 1639–1649. [Google Scholar] [CrossRef]
- Kuroki, K.; Owa, S. Notes on new class for certain analytic functions. Rims Kokyuroku 2011, 1772, 21–25. [Google Scholar]
- Ahmad, A.; Gong, J.; Al-Shbeil, I.; Rasheed, A.; Ali, A.; Hussain, S. Analytic functions related to a Balloon-shaped domain. Fractal. Fract. 2023, 7, 865. [Google Scholar] [CrossRef]
- Cho, N.E.; Ebadian, A.; Bulut, S.; Adegani, A.E. Subordination implications and coefficient estimates for subclasses of starlike functions. Mathematics 2020, 8, 1150. [Google Scholar] [CrossRef]
- Pascu, N.N. Alpha-close-to-convex functions. In Romanian-Finnish Seminar on Complex Analysis; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1976; Volume 743, pp. 331–335. [Google Scholar]
- Mocanu, P.T. Une propriété de convexité généralisée dans la théorie de la représentation conforme. Mathematica 1969, 11, 127–133. [Google Scholar]
- Breaz, D.V.; Karthikeyan, K.R.; Umadevi, E. Non-Carathéodory analytic functions with respect to symmetric points. Math. Comput. Model. Dyn. Syst. 2024, 30, 266–283. [Google Scholar] [CrossRef]
- Sim, Y.J.; Kwon, O.S. Notes on analytic functions with a bounded positive real part. J. Inequal. Appl. 2013, 370, 9. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Y.-P.; Rasila, A. Coefficient estimates for certain subclasses of analytic and bi-univalent functions. Filomat 2015, 29, 351–360. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Karthikeyan, K.R.; Mohankumar, D. Starlike Functions with Respect to (ℓ, κ)-Symmetric Points Associated with the Vertical Domain. Symmetry 2025, 17, 933. https://doi.org/10.3390/sym17060933
Breaz D, Karthikeyan KR, Mohankumar D. Starlike Functions with Respect to (ℓ, κ)-Symmetric Points Associated with the Vertical Domain. Symmetry. 2025; 17(6):933. https://doi.org/10.3390/sym17060933
Chicago/Turabian StyleBreaz, Daniel, Kadhavoor R. Karthikeyan, and Dharmaraj Mohankumar. 2025. "Starlike Functions with Respect to (ℓ, κ)-Symmetric Points Associated with the Vertical Domain" Symmetry 17, no. 6: 933. https://doi.org/10.3390/sym17060933
APA StyleBreaz, D., Karthikeyan, K. R., & Mohankumar, D. (2025). Starlike Functions with Respect to (ℓ, κ)-Symmetric Points Associated with the Vertical Domain. Symmetry, 17(6), 933. https://doi.org/10.3390/sym17060933