Exploring the Interpretations of Charmonia and cc Tetraquarks in the Relativistic Flux Tube Model
Abstract
:1. Introduction
2. Relativistic Flux Tube Model
3. Fine and Hyperfine Structure
4. Results and Discussion
4.1. Charmonium
4.2. Fully Charmed Tetraquark
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navas, S.; Amsler, C.; Gutsche, T.; Hanhart, C.; Hernández-Rey, J.; Lourenco, C.; Masoni, A.; Mikhasenko, M.; Mitchell, R.; Patrignani, C.; et al. Review of Particle Physics. Phys. Rev. D 2024, 110, 030001. [Google Scholar] [CrossRef]
- Olsen, S.L.; Skwarnicki, T.; Zieminska, D. Nonstandard heavy mesons and baryons: Experimental evidence. Rev. Mod. Phys. 2018, 90, 015003. [Google Scholar] [CrossRef]
- Zhu, F.; Bauer, G.; Yi, K. Experimental Road to a Charming Family of Tetraquarks … and Beyond. Chin. Phys. Lett. 2024, 41, 111201. [Google Scholar] [CrossRef]
- Hosaka, A.; Iijima, T.; Miyabayashi, K.; Sakai, Y.; Yasui, S. Exotic hadrons with heavy flavors: X, Y, Z, and related states. PTEP 2016, 2016, 062C01. [Google Scholar] [CrossRef]
- Ali, A.; Lange, J.S.; Stone, S. Exotics: Heavy Pentaquarks and Tetraquarks. Prog. Part. Nucl. Phys. 2017, 97, 123–198. [Google Scholar] [CrossRef]
- Lebed, R.F.; Mitchell, R.E.; Swanson, E.S. Heavy-Quark QCD Exotica. Prog. Part. Nucl. Phys. 2017, 93, 143–194. [Google Scholar] [CrossRef]
- Esposito, A.; Pilloni, A.; Polosa, A.D. Multiquark Resonances. Phys. Rep. 2017, 668, 1–97. [Google Scholar] [CrossRef]
- Guo, F.K.; Hanhart, C.; Meißner, U.G.; Wang, Q.; Zhao, Q.; Zou, B.S. Hadronic molecules. Rev. Mod. Phys. 2018, 90, 015004, Erratum in Rev. Mod. Phys. 2022, 94, 029901. [Google Scholar] [CrossRef]
- Karliner, M.; Rosner, J.L.; Skwarnicki, T. Multiquark States. Ann. Rev. Nucl. Part. Sci. 2018, 68, 17–44. [Google Scholar] [CrossRef]
- Liu, Y.R.; Chen, H.X.; Chen, W.; Liu, X.; Zhu, S.L. Pentaquark and Tetraquark states. Prog. Part. Nucl. Phys. 2019, 107, 237–320. [Google Scholar] [CrossRef]
- Albuquerque, R.M.; Dias, J.M.; Khemchandani, K.P.; Torres, A.M.; Navarra, F.S.; Nielsen, M.; Zanetti, C.M. QCD sum rules approach to the X, Y and Z states. J. Phys. G 2019, 46, 093002. [Google Scholar] [CrossRef]
- Agaev, S.; Azizi, K.; Sundu, H. Four-quark exotic mesons. Turk. J. Phys. 2020, 44, 95–173. [Google Scholar] [CrossRef]
- Yang, G.; Ping, J.; Segovia, J. Tetra- and penta-quark structures in the constituent quark model. Symmetry 2020, 12, 1869. [Google Scholar] [CrossRef]
- Brambilla, N.; Eidelman, S.; Hanhart, C.; Nefediev, A.; Shen, C.P.; Thomas, C.E.; Vairo, A.; Yuan, C.Z. The XYZ states: Experimental and theoretical status and perspectives. Phys. Rep. 2020, 873, 1–154. [Google Scholar] [CrossRef]
- Faustov, R.N.; Galkin, V.O.; Savchenko, E.M. Heavy tetraquarks in the relativistic quark model. Universe 2021, 7, 94. [Google Scholar] [CrossRef]
- Chen, H.X.; Chen, W.; Liu, X.; Liu, Y.R.; Zhu, S.L. An updated review of the new hadron states. Rept. Prog. Phys. 2023, 86, 026201. [Google Scholar] [CrossRef]
- Huang, H.; Deng, C.; Liu, X.; Tan, Y.; Ping, J. Tetraquarks and Pentaquarks from Quark Model Perspective. Symmetry 2023, 15, 1298. [Google Scholar] [CrossRef]
- Bicudo, P. Tetraquarks and pentaquarks in lattice QCD with light and heavy quarks. Phys. Rep. 2023, 1039, 1–49. [Google Scholar] [CrossRef]
- Liu, M.Z.; Pan, Y.W.; Liu, Z.W.; Wu, T.W.; Lu, J.X.; Geng, L.S. Three ways to decipher the nature of exotic hadrons: Multiplets, three-body hadronic molecules, and correlation functions. Phys. Rep. 2025, 1108, 1–108. [Google Scholar] [CrossRef]
- Wang, Z.G. Review of the QCD sum rules for exotic states. arXiv 2025, arXiv:2502.11351. Available online: https://arxiv.org/abs/2502.11351 (accessed on 6 June 2025).
- LHCb Collaboration. Observation of structure in the J/ψ-pair mass spectrum. Sci. Bull. 2020, 65, 1983–1993. [Google Scholar] [CrossRef] [PubMed]
- Aad, G.; Abbott, B.; Abeling, K.; Abicht, N.; Abidi, S.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; ATLAS Collaboration. Observation of an Excess of Dicharmonium Events in the Four-Muon Final State with the ATLAS Detector. Phys. Rev. Lett. 2023, 131, 151902. [Google Scholar] [CrossRef] [PubMed]
- Hayrapetyan, A.; Tumasyan, A.; Adam, W.; Andrejkovic, J.; Bergauer, T.; Chatterjee, S.; Damanakis, K.; Dragicevic, M.; Valle, A.E.D.; CMS Collaboration. New Structures in the J/ψJ/ψ Mass Spectrum in Proton-Proton Collisions at =13 TeV. Phys. Rev. Lett. 2024, 132, 111901. [Google Scholar] [CrossRef] [PubMed]
- Gell-Mann, M. A Schematic Model of Baryons and Mesons. Phys. Lett. 1964, 8, 214–215. [Google Scholar] [CrossRef]
- Zweig, G. An SU3 Model for Strong Interaction Symmetry and Its Breaking; Version 2. CERN-TH-412. Available online: https://cds.cern.ch/record/570209 (accessed on 6 June 2025).
- Barnes, T.; Godfrey, S.; Swanson, E.S. Higher charmonia. Phys. Rev. D 2005, 72, 054026. [Google Scholar] [CrossRef]
- Cao, L.; Yang, Y.C.; Chen, H. Charmonium states in QCD-inspired quark potential model using Gaussian expansion method. Few Body Syst. 2012, 53, 327–342. [Google Scholar] [CrossRef]
- Soni, N.R.; Joshi, B.R.; Shah, R.P.; Chauhan, H.R.; Pandya, J.N. Q (Q∈{b, c}) spectroscopy using the Cornell potential. Eur. Phys. J. C 2018, 78, 592. [Google Scholar] [CrossRef]
- Radford, S.F.; Repko, W.W. Potential model calculations and predictions for heavy quarkonium. Phys. Rev. D 2007, 75, 074031. [Google Scholar] [CrossRef]
- Kher, V.; Rai, A.K. Spectroscopy and decay properties of charmonium. Chin. Phys. C 2018, 42, 083101. [Google Scholar] [CrossRef]
- Godfrey, S.; Isgur, N. Mesons in a Relativized Quark Model with Chromodynamics. Phys. Rev. D 1985, 32, 189–231. [Google Scholar] [CrossRef]
- Ebert, D.; Faustov, R.N.; Galkin, V.O. Spectroscopy and Regge trajectories of heavy quarkonia and Bc mesons. Eur. Phys. J. C 2011, 71, 1825. [Google Scholar] [CrossRef]
- Ahmad, Z.; Asghar, I.; Akram, F.; Masud, B. Strong decays of charmonia. Phys. Rev. D 2025, 111, 034007. [Google Scholar] [CrossRef]
- Vijande, J.; Fernandez, F.; Valcarce, A. Constituent quark model study of the meson spectra. J. Phys. G 2005, 31, 481. [Google Scholar] [CrossRef]
- Segovia, J.; Entem, D.R.; Fernandez, F.; Hernandez, E. Constituent quark model description of charmonium phenomenology. Int. J. Mod. Phys. E 2013, 22, 1330026. [Google Scholar] [CrossRef]
- Eichten, E.J.; Lane, K.; Quigg, C. New states above charm threshold. Phys. Rev. D 2006, 73, 014014, Erratum in Phys. Rev. D 2006, 73, 079903. [Google Scholar] [CrossRef]
- Li, B.Q.; Chao, K.T. Higher Charmonia and X, Y, Z states with Screened Potential. Phys. Rev. D 2009, 79, 094004. [Google Scholar] [CrossRef]
- Deng, W.J.; Liu, H.; Gui, L.C.; Zhong, X.H. Charmonium spectrum and their electromagnetic transitions with higher multipole contributions. Phys. Rev. D 2017, 95, 034026. [Google Scholar] [CrossRef]
- Wang, J.Z.; Chen, D.Y.; Liu, X.; Matsuki, T. Constructing J/ψ family with updated data of charmoniumlike Y states. Phys. Rev. D 2019, 99, 114003. [Google Scholar] [CrossRef]
- Bokade, C.A.; Bhaghyesh. Conventional and XYZ charmonium states in a relativistic screened potential model. Phys. Rev. D 2025, 111, 014030. [Google Scholar] [CrossRef]
- Iwasaki, Y. A Possible Model for New Resonances-Exotics and Hidden Charm. Prog. Theor. Phys. 1975, 54, 492. [Google Scholar] [CrossRef]
- Chao, K.T. The (cc)-() (Diquark-Antidiquark) States in e+e− Annihilation. Z. Phys. C 1981, 7, 317. [Google Scholar] [CrossRef]
- Ader, J.P.; Richard, J.M.; Taxil, P. Do narrow heavy multiquark states exist? Phys. Rev. D 1982, 25, 2370. [Google Scholar] [CrossRef]
- Heller, L.; Tjon, J.A. Bound States of Heavy Q22 Systems. Phys. Rev. D 1985, 32, 755. [Google Scholar] [CrossRef]
- Badalian, A.M.; Ioffe, B.L.; Smilga, A.V. Four-quark states in heavy quark systems. Nucl. Phys. B 1987, 281, 85. [Google Scholar] [CrossRef]
- Lloyd, R.J.; Vary, J.P. All-charm tetraquarks. Phys. Rev. D 2004, 70, 014009. [Google Scholar] [CrossRef]
- Barnea, N.; Vijande, J.; Valcarce, A. Four-quark spectroscopy within the hyperspherical formalism. Phys. Rev. D 2006, 73, 054004. [Google Scholar] [CrossRef]
- Chiu, T.W.; Hsieh, T.-H.; TWQCD Collaboration. Y(4260) on the lattice. Phys. Rev. D 2006, 73, 094510. [Google Scholar] [CrossRef]
- Berezhnoy, A.V.; Luchinsky, A.V.; Novoselov, A.A. Heavy tetraquarks production at the LHC. Phys. Rev. D 2012, 86, 034004. [Google Scholar] [CrossRef]
- Heupel, W.; Eichmann, G.; Fischer, C.S. Tetraquark Bound States in a Bethe-Salpeter Approach. Phys. Lett. B 2012, 718, 545–549. [Google Scholar] [CrossRef]
- Wang, Z.G. Analysis of the QQ tetraquark states with QCD sum rules. Eur. Phys. J. C 2017, 77, 432. [Google Scholar] [CrossRef]
- Chen, W.; Chen, H.X.; Liu, X.; Steele, T.G.; Zhu, S.L. Hunting for exotic doubly hidden-charm/bottom tetraquark states. Phys. Lett. B 2017, 773, 247–251. [Google Scholar] [CrossRef]
- Karliner, M.; Nussinov, S.; Rosner, J.L. QQ states: Masses, production, and decays. Phys. Rev. D 2017, 95, 034011. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.R.; Chen, K.; Liu, X.; Zhu, S.L. Heavy-flavored tetraquark states with the QQ configuration. Phys. Rev. D 2018, 97, 094015. [Google Scholar] [CrossRef]
- Anwar, M.N.; Ferretti, J.; Guo, F.K.; Santopinto, E.; Zou, B.S. Spectroscopy and decays of the fully-heavy tetraquarks. Eur. Phys. J. C 2018, 78, 647. [Google Scholar] [CrossRef]
- Debastiani, V.R.; Navarra, F.S. A non-relativistic model for the [cc][] tetraquark. Chin. Phys. C 2019, 43, 013105. [Google Scholar] [CrossRef]
- Kalamidas, P.; Vanderhaeghen, M. All-charm tetraquark and its contribution to two-photon processes. Phys. Rev. D 2025, 111, 094033. [Google Scholar] [CrossRef]
- Bedolla, M.A.; Ferretti, J.; Roberts, C.D.; Santopinto, E. Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective. Eur. Phys. J. C 2020, 80, 1004. [Google Scholar] [CrossRef]
- Faustov, R.N.; Galkin, V.O.; Savchenko, E.M. Masses of the QQ tetraquarks in the relativistic diquark-antidiquark picture. Phys. Rev. D 2020, 102, 114030. [Google Scholar] [CrossRef]
- Faustov, R.N.; Galkin, V.O.; Savchenko, E.M. Fully Heavy Tetraquark Spectroscopy in the Relativistic Quark Model. Symmetry 2022, 14, 2504. [Google Scholar] [CrossRef]
- Tiwari, R.; Rathaud, D.P.; Rai, A.K. Spectroscopy of all charm tetraquark states. Indian J. Phys. 2023, 97, 943–954. [Google Scholar] [CrossRef]
- Dong, W.C.; Wang, Z.G. Going in quest of potential tetraquark interpretations for the newly observed Tψψ states in light of the diquark-antidiquark scenarios. Phys. Rev. D 2023, 107, 074010. [Google Scholar] [CrossRef]
- Liu, M.S.; Lü, Q.F.; Zhong, X.H.; Zhao, Q. All-heavy tetraquarks. Phys. Rev. D 2019, 100, 016006. [Google Scholar] [CrossRef]
- Wang, Z.G.; Di, Z.Y. Analysis of the vector and axialvector QQ tetraquark states with QCD sum rules. Acta Phys. Polon. B 2019, 50, 1335. [Google Scholar] [CrossRef]
- Wang, G.J.; Meng, L.; Zhu, S.L. Spectrum of the fully-heavy tetraquark state QQ. Phys. Rev. D 2019, 100, 096013. [Google Scholar] [CrossRef]
- Gordillo, M.C.; Soto, F.D.; Segovia, J. Diffusion Monte Carlo calculations of fully-heavy multiquark bound states. Phys. Rev. D 2020, 102, 114007. [Google Scholar] [CrossRef]
- Albuquerque, R.M.; Narison, S.; Rabemananjara, A.; Rabetiarivony, D.; Randriamanatrika, G. Doubly-hidden scalar heavy molecules and tetraquarks states from QCD at NLO. Phys. Rev. D 2020, 102, 094001. [Google Scholar] [CrossRef]
- Jin, X.; Xue, Y.; Huang, H.; Ping, J. Full-heavy tetraquarks in constituent quark models. Eur. Phys. J. C 2020, 80, 1083. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, S.; Zhuang, P. Fully-heavy tetraquarks in a strongly interacting medium. Phys. Rev. D 2020, 102, 114001. [Google Scholar] [CrossRef]
- Karliner, M.; Rosner, J.L. Interpretation of structure in the di-J/ψ spectrum. Phys. Rev. D 2020, 102, 114039. [Google Scholar] [CrossRef]
- Lü, Q.F.; Chen, D.Y.; Dong, Y.B. Masses of fully heavy tetraquarks QQ in an extended relativized quark model. Eur. Phys. J. C 2020, 80, 871. [Google Scholar] [CrossRef]
- Lundhammar, P.; Ohlsson, T. Nonrelativistic model of tetraquarks and predictions for their masses from fits to charmed and bottom meson data. Phys. Rev. D 2020, 102, 054018. [Google Scholar] [CrossRef]
- Giron, J.F.; Lebed, R.F. Simple spectrum of c states in the dynamical diquark model. Phys. Rev. D 2020, 102, 074003. [Google Scholar] [CrossRef]
- Wang, Z.G. Tetraquark candidates in LHCb’s di-J/ψ mass spectrum. Chin. Phys. C 2020, 44, 113106. [Google Scholar] [CrossRef]
- Zhang, J.R. 0+ fully-charmed tetraquark states. Phys. Rev. D 2021, 103, 014018. [Google Scholar] [CrossRef]
- Sonnenschein, J.; Weissman, D. Deciphering the recently discovered tetraquark candidates around 6.9 GeV. Eur. Phys. J. C 2021, 81, 25. [Google Scholar] [CrossRef]
- Deng, C.; Chen, H.; Ping, J. Towards the understanding of fully-heavy tetraquark states from various models. Phys. Rev. D 2021, 103, 014001. [Google Scholar] [CrossRef]
- Nefediev, A.V. X(6200) as a compact tetraquark in the QCD string model. Eur. Phys. J. C 2021, 81, 692. [Google Scholar] [CrossRef]
- Wang, Q.N.; Yang, Z.Y.; Chen, W. Exotic fully-heavy Q tetraquark states in 8[Q]⊗8[Q] color configuration. Phys. Rev. D 2021, 104, 114037. [Google Scholar] [CrossRef]
- Yang, G.; Ping, J.; Segovia, J. Exotic resonances of fully-heavy tetraquarks in a lattice-QCD insipired quark model. Phys. Rev. D 2021, 104, 014006. [Google Scholar] [CrossRef]
- Zhu, R. Fully-heavy tetraquark spectra and production at hadron colliders. Nucl. Phys. B 2021, 966, 115393. [Google Scholar] [CrossRef]
- Wang, G.J.; Meng, L.; Oka, M.; Zhu, S.L. Higher fully charmed tetraquarks: Radial excitations and P-wave states. Phys. Rev. D 2021, 104, 036016. [Google Scholar] [CrossRef]
- Liu, F.X.; Liu, M.S.; Zhong, X.H.; Zhao, Q. Higher mass spectra of the fully-charmed and fully-bottom tetraquarks. Phys. Rev. D 2021, 104, 116029. [Google Scholar] [CrossRef]
- Li, Q.; Chang, C.H.; Wang, G.L.; Wang, T. Mass spectra and wave functions of TQQ tetraquarks. Phys. Rev. D 2021, 104, 014018. [Google Scholar] [CrossRef]
- Mutuk, H. Nonrelativistic treatment of fully-heavy tetraquarks as diquark-antidiquark states. Eur. Phys. J. C 2021, 81, 367. [Google Scholar] [CrossRef]
- Wang, Z.G. Revisit the tetraquark candidates in the J/ψJ/ψ mass spectrum. Int. J. Mod. Phys. A 2021, 36, 2150014. [Google Scholar] [CrossRef]
- Yang, B.C.; Tang, L.; Qiao, C.F. Scalar fully-heavy tetraquark states QQ′ in QCD sum rules. Eur. Phys. J. C 2021, 81, 324. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, K.; Kaewsnod, A.; Liu, X.; Limphirat, A.; Yan, Y. Study of charmoniumlike and fully-charm tetraquark spectroscopy. Phys. Rev. D 2021, 103, 116027. [Google Scholar] [CrossRef]
- Weng, X.Z.; Chen, X.L.; Deng, W.Z.; Zhu, S.L. Systematics of fully heavy tetraquarks. Phys. Rev. D 2021, 103, 034001. [Google Scholar] [CrossRef]
- Ke, H.W.; Han, X.; Liu, X.H.; Shi, Y.L. Tetraquark state X(6900) and the interaction between diquark and antidiquark. Eur. Phys. J. C 2021, 81, 427. [Google Scholar] [CrossRef]
- Chen, X. The Genuine Resonance of Full-Charm Tetraquarks. Universe 2021, 7, 155. [Google Scholar] [CrossRef]
- Dong, X.K.; Baru, V.; Guo, F.K.; Hanhart, C.; Nefediev, A. Coupled-Channel Interpretation of the LHCb Double-J/ψ Spectrum and Hints of a New State Near the J/ψJ/ψ Threshold. Phys. Rev. Lett. 2021, 126, 132001, Erratum in Phys. Rev. Lett. 2021, 127, 119901. [Google Scholar] [CrossRef]
- Kuang, Z.; Serafin, K.; Zhao, X.; Vary, J.P. All-charm tetraquark in front form dynamics. Phys. Rev. D 2022, 105, 094028. [Google Scholar] [CrossRef]
- Wang, Z.G. Analysis of the X(6600), X(6900), X(7300) and related tetraquark states with the QCD sum rules. Nucl. Phys. B 2022, 985, 115983. [Google Scholar] [CrossRef]
- Majarshin, A.J.; Luo, Y.A.; Pan, F.; Segovia, J. Bosonic algebraic approach applied to the [QQ][] tetraquarks. Phys. Rev. D 2022, 105, 054024. [Google Scholar] [CrossRef]
- Zhuang, Z.; Zhang, Y.; Ma, Y.; Wang, Q. Lineshape of the compact fully heavy tetraquark. Phys. Rev. D 2022, 105, 054026. [Google Scholar] [CrossRef]
- Wu, R.H.; Zuo, Y.S.; Wang, C.Y.; Meng, C.; Ma, Y.Q.; Chao, K.T. NLO results with operator mixing for fully heavy tetraquarks in QCD sum rules. JHEP 2022, 11, 023. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.B.; Li, G.; An, C.S.; Deng, C.R.; Xie, J.J. Spectrum of the S-wave fully-heavy tetraquark states. Eur. Phys. J. C 2022, 82, 1126. [Google Scholar] [CrossRef]
- Wang, G.J.; Meng, Q.; Oka, M. S-wave fully charmed tetraquark resonant states. Phys. Rev. D 2022, 106, 096005. [Google Scholar] [CrossRef]
- Zhou, Q.; Guo, D.; Kuang, S.Q.; Yang, Q.H.; Dai, L.Y. Nature of the X(6900) in partial wave decomposition of J/ψJ/ψ scattering. Phys. Rev. D 2022, 106, L111502. [Google Scholar] [CrossRef]
- Agaev, S.S.; Azizi, K.; Barsbay, B.; Sundu, H. Exploring fully heavy scalar tetraquarks QQ. Phys. Lett. B 2023, 844, 138089. [Google Scholar] [CrossRef]
- Ortega, P.G.; Entem, D.R.; Fernández, F. Exploring Tψψ tetraquark candidates in a coupled-channels formalism. Phys. Rev. D 2023, 108, 094023. [Google Scholar] [CrossRef]
- Agaev, S.S.; Azizi, K.; Barsbay, B.; Sundu, H. Hadronic molecules ηcηc and χc0χc0. Eur. Phys. J. Plus 2023, 138, 935. [Google Scholar] [CrossRef]
- Yan, T.Q.; Zhang, W.X.; Jia, D. Mass spectra of hidden heavy-flavor tetraquarks with two and four heavy quarks. Eur. Phys. J. C 2023, 83, 810. [Google Scholar] [CrossRef]
- Agaev, S.S.; Azizi, K.; Barsbay, B.; Sundu, H. Resonance X(7300): Excited 2S tetraquark or hadronic molecule χc1χc1? Eur. Phys. J. C 2023, 83, 994. [Google Scholar] [CrossRef]
- An, H.T.; Luo, S.Q.; Liu, Z.W.; Liu, X. Spectroscopic behavior of fully heavy tetraquarks. Eur. Phys. J. C 2023, 83, 740. [Google Scholar] [CrossRef]
- Kuang, S.Q.; Zhou, Q.; Guo, D.; Yang, Q.H.; Dai, L.Y. Study of X(6900) with unitarized coupled channel scattering amplitudes. Eur. Phys. J. C 2023, 83, 383. [Google Scholar] [CrossRef]
- Yu, G.L.; Li, Z.Y.; Wang, Z.G.; Lu, J.; Yan, M. The S- and P-wave fully charmed tetraquark states and their radial excitations. Eur. Phys. J. C 2023, 83, 416. [Google Scholar] [CrossRef]
- Badalian, A.M. The X(6550), X(6900), X(7280) Resonances as the nS, cc States. Phys. Atom. Nucl. 2023, 86, 701–708. [Google Scholar] [CrossRef]
- Wu, W.L.; Chen, Y.K.; Meng, L.; Zhu, S.L. Benchmark calculations of fully heavy compact and molecular tetraquark states. Phys. Rev. D 2024, 109, 054034. [Google Scholar] [CrossRef]
- Agaev, S.S.; Azizi, K.; Barsbay, B.; Sundu, H. Fully charmed resonance X(6900) and its beauty counterpart. Nucl. Phys. A 2024, 1041, 122768. [Google Scholar] [CrossRef]
- Liu, M.S.; Liu, F.X.; Zhong, X.H.; Zhao, Q. Fully heavy tetraquark states and their evidences in LHC observations. Phys. Rev. D 2024, 109, 076017. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Chen, X.L.; Yang, P.F.; Chen, W. P-wave fully charm and fully bottom tetraquark states. Phys. Rev. D 2024, 109, 094011. [Google Scholar] [CrossRef]
- Anwar, M.N.; Burns, T.J. Structure of cc tetraquarks and interpretation of LHC states. Phys. Rev. D 2024, 110, 034012. [Google Scholar] [CrossRef]
- Wu, W.L.; Zhu, S.L. Fully charmed P-wave tetraquark resonant states in the quark model. Phys. Rev. D 2025, 111, 034044. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Ping, J.; Huang, H.; Tan, Y. Further study of c system within a chiral quark model. Eur. Phys. J. C 2025, 85, 147. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, C.; Tuo, X.Y.; Yan, H.; Zhang, Z. Lattice calculation of the ηcηc and J/ψJ/ψ s-wave scattering length. Eur. Phys. J. C 2025, 85, 458. [Google Scholar] [CrossRef]
- Eskin, A.V.; Martynenko, A.P.; Martynenko, F.A. Mass spectrum of heavy tetraquarks in variational approach. arXiv 2025, arXiv:2505.05993. Available online: https://arxiv.org/abs/2505.05993 (accessed on 6 June 2025).
- Li, G.; Shi, C.; Chen, Y.; Sun, W. Tensor Resonance in J/ψJ/ψ Scattering from Lattice QCD. arXiv 2025, arXiv:2505.24213. Available online: https://arxiv.org/abs/2505.24213 (accessed on 6 June 2025).
- Li, G.; Shi, C.; Chen, Y.; Sun, W. ηcηc and J/ψJ/ψ scatterings from lattice QCD. arXiv 2025, arXiv:2505.23220. Available online: https://arxiv.org/abs/2505.23220 (accessed on 6 June 2025).
- Chew, G.F.; Frautschi, S.C. Regge Trajectories and the Principle of Maximum Strength for Strong Interactions. Phys. Rev. Lett. 1962, 8, 41–44. [Google Scholar] [CrossRef]
- Nambu, Y. Strings, monopoles, and gauge fields. Phys. Rev. D 1974, 10, 4262. [Google Scholar] [CrossRef]
- Johnson, K.; Nohl, C. Simple semiclassical model for the rotational states of mesons containing massive quarks. Phys. Rev. D 1979, 19, 291. [Google Scholar] [CrossRef]
- Cea, P.; Colangelo, P.; Nardulli, G.; Paiano, G.; Preparata, G. WKB approach to the Schrodinger equation with relativistic kinematics. Phys. Rev. D 1982, 26, 1157. [Google Scholar] [CrossRef]
- LaCourse, D.; Olsson, M.G. String potential model: Spinless quarks. Phys. Rev. D 1989, 39, 2751. [Google Scholar] [CrossRef]
- Olson, C.; Olsson, M.G.; Williams, K. QCD, relativistic flux tubes, and potential models. Phys. Rev. D 1992, 45, 4307–4311. [Google Scholar] [CrossRef] [PubMed]
- Sergeenko, M.N. An Interpolating mass formula and Regge trajectories for light and heavy quarkonia. Z. Phys. C 1994, 64, 315–322. [Google Scholar] [CrossRef]
- Dubin, A.Y.; Kaidalov, A.B.; Simonov, Y.A. Dynamical regimes of the QCD string with quarks. Phys. Lett. B 1994, 323, 41–45. [Google Scholar] [CrossRef]
- Brau, F. Bohr-Sommerfeld quantization and meson spectroscopy. Phys. Rev. D 2000, 62, 014005. [Google Scholar] [CrossRef]
- Brisudova, M.M.; Burakovsky, L.; Goldman, J.T. Effective functional form of Regge trajectories. Phys. Rev. D 2000, 61, 054013. [Google Scholar] [CrossRef]
- Anisovich, A.V.; Anisovich, V.V.; Sarantsev, A.V. Systematics of q states in the (n, M2) and (J, M2) planes. Phys. Rev. D 2000, 62, 051502. [Google Scholar] [CrossRef]
- Kalashnikova, Y.S.; Nefediev, A.V.; Simonov, Y.A. QCD string in light-light and heavy-light mesons. Phys. Rev. D 2001, 64, 014037. [Google Scholar] [CrossRef]
- Bugg, D.V. Four sorts of meson. Phys. Rep. 2004, 397, 257–358. [Google Scholar] [CrossRef]
- Kruczenski, M.; Zayas, L.A.P.; Sonnenschein, J.; Vaman, D. Regge trajectories for mesons in the holographic dual of large-Nc QCD. JHEP 2005, 6, 046. [Google Scholar] [CrossRef]
- Karch, A.; Katz, E.; Son, D.T.; Stephanov, M.A. Linear confinement and AdS/QCD. Phys. Rev. D 2006, 74, 015005. [Google Scholar] [CrossRef]
- Gershtein, S.S.; Likhoded, A.K.; Luchinsky, A.V. Systematics of heavy quarkonia from Regge trajectories on (n, M2) and (M2, J) planes. Phys. Rev. D 2006, 74, 016002. [Google Scholar] [CrossRef]
- Bicudo, P. Large degeneracy of excited hadrons and quark models. Phys. Rev. D 2007, 76, 094005. [Google Scholar] [CrossRef]
- Afonin, S.S. Properties of possible new unflavored mesons below 2.4 GeV. Phys. Rev. C 2007, 76, 015202. [Google Scholar] [CrossRef]
- Gherghetta, T.; Kapusta, J.I.; Kelley, T.M. Chiral symmetry breaking in the soft-wall AdS/QCD model. Phys. Rev. D 2009, 79, 076003. [Google Scholar] [CrossRef]
- Chen, B.; Wang, D.X.; Zhang, A. Interpretation of DsJ(2632)+, Ds1(2700)±, (2860)+, and DsJ(3040)+. Phys. Rev. D 2009, 80, 071502. [Google Scholar] [CrossRef]
- Masjuan, P.; Arriola, E.R.; Broniowski, W. Systematics of radial and angular-momentum Regge trajectories of light nonstrange q-states. Phys. Rev. D 2012, 85, 094006, Reply: Phys. Rev. D 2013, 87, 118502. [Google Scholar] [CrossRef]
- Afonin, S.S.; Pusenkov, I.V. Universal description of radially excited heavy and light vector mesons. Phys. Rev. D 2014, 90, 094020. [Google Scholar] [CrossRef]
- Badalian, A.M.; Bakker, B.L.G. Radial and orbital Regge trajectories in heavy quarkonia. Phys. Rev. D 2019, 100, 054036. [Google Scholar] [CrossRef]
- Jia, D.; Dong, W.C. Regge-like spectra of excited singly heavy mesons. Eur. Phys. J. Plus 2019, 134, 123. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, A.; He, J. Bottomonium spectrum in the relativistic flux tube model. Phys. Rev. D 2020, 101, 014020. [Google Scholar] [CrossRef]
- Pan, J.; Pan, J.H. Remarks on the S-wave masses of singly heavy mesons. arXiv 2022, arXiv:2209.14948. Available online: https://arxiv.org/abs/2209.14948 (accessed on 6 June 2025).
- Carlson, J.; Kogut, J.B.; Pandharipande, V.R. Hadron spectroscopy in a flux-tube quark model. Phys. Rev. D 1983, 28, 2807. [Google Scholar] [CrossRef]
- Brambilla, N.; Prosperi, G.M.; Vairo, A. Three body relativistic flux tube model from QCD Wilson loop approach. Phys. Lett. B 1995, 362, 113–122. [Google Scholar] [CrossRef]
- Iwasaki, M.; Takagi, F. Mass spectra and decay widths of hadrons in the relativistic string model. Phys. Rev. D 1999, 59, 094024. [Google Scholar] [CrossRef]
- Tang, A.; Norbury, J.W. Properties of Regge trajectories. Phys. Rev. D 2000, 62, 016006. [Google Scholar] [CrossRef]
- Inopin, A.; Sharov, G.S. Hadronic Regge trajectories: Problems and approaches. Phys. Rev. D 2001, 63, 054023. [Google Scholar] [CrossRef]
- Selem, A.; Wilczek, F. Hadron systematics and emergent diquarks. Proc. Ringberg Workshop New Trends Hera Phys. 2006, 2006, 337–356. [Google Scholar] [CrossRef]
- Forkel, H.; Beyer, M.; Frederico, T. Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD. JHEP 2007, 7, 077. [Google Scholar] [CrossRef]
- Glozman, L.Y. Restoration of chiral and U(1)A symmetries in excited hadrons. Phys. Rep. 2007, 444, 1–49. [Google Scholar] [CrossRef]
- Shifman, M.; Vainshtein, A. Highly excited mesons, linear Regge trajectories, and the pattern of the chiral symmetry realization. Phys. Rev. D 2008, 77, 034002. [Google Scholar] [CrossRef]
- Gutsche, T.; Lyubovitskij, V.E.; Schmidt, I.; Vega, A. Dilaton in a soft-wall holographic approach to mesons and baryons. Phys. Rev. D 2012, 85, 076003. [Google Scholar] [CrossRef]
- Chen, K.; Dong, Y.; Liu, X.; Lü, Q.F.; Matsuki, T. Regge-like relation and a universal description of heavy–light systems. Eur. Phys. J. C 2018, 78, 20. [Google Scholar] [CrossRef]
- Jia, D.; Dong, W.C.; Hosaka, A. Regge-Like Mass Relation of Singly Heavy Hadrons. JPS Conf. Proc. 2019, 26, 022021. [Google Scholar] [CrossRef]
- Nielsen, M.; Brodsky, S.J. Hadronic superpartners from a superconformal and supersymmetric algebra. Phys. Rev. D 2018, 97, 114001. [Google Scholar] [CrossRef]
- Rossi, G.; Veneziano, G. The string-junction picture of multiquark states: An update. JHEP 2016, 06, 041. [Google Scholar] [CrossRef]
- Sonnenschein, J.; Weissman, D. Excited mesons, baryons, glueballs and tetraquarks: Predictions of the Holography Inspired Stringy Hadron model. Eur. Phys. J. C 2019, 79, 326. [Google Scholar] [CrossRef]
- Chen, J.K. Regge trajectory relation for the universal description of the heavy-heavy systems: Diquarks, mesons, baryons and tetraquarks. Nucl. Phys. A 2024, 1050, 122927. [Google Scholar] [CrossRef]
- Chen, J.K. Regge trajectory relations for the universal description of the heavy-light systems: Diquarks, mesons, baryons and tetraquarks. Eur. Phys. J. C 2024, 84, 356. [Google Scholar] [CrossRef]
- Capossoli, E.F.; Contreras, M.A.M.; Li, D.; Vega, A.; Boschi-Filho, H. Hadronic spectra from deformed AdS backgrounds. Chin. Phys. C 2020, 44, 064104. [Google Scholar] [CrossRef]
- Burns, T.J.; Piccinini, F.; Polosa, A.D.; Sabelli, C. The 2−+ assignment for the X(3872). Phys. Rev. D 2010, 82, 074003. [Google Scholar] [CrossRef]
- Barnes, T.; Close, F.E.; Swanson, E.S. Hybrid and conventional mesons in the flux tube model: Numerical studies and their phenomenological implications. Phys. Rev. D 1995, 52, 5242–5256. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Huang, M. Dynamical holographic QCD model for glueball and light meson spectra. JHEP 2013, 11, 088. [Google Scholar] [CrossRef]
- Fiore, R.; Jenkovszky, L.L.; Paccanoni, F.; Prokudin, A. Baryonic Regge trajectories with analyticity constraints. Phys. Rev. D 2004, 70, 054003. [Google Scholar] [CrossRef]
- Klempt, E.; Metsch, B.C. Multiplet classification of light-quark baryons. Eur. Phys. J. A 2012, 48, 127. [Google Scholar] [CrossRef]
- Chen, B.; Wei, K.W.; Zhang, A. Investigation of ΛQ and ΞQ baryons in the heavy quark-light diquark picture. Eur. Phys. J. A 2015, 51, 82. [Google Scholar] [CrossRef]
- Fernández-Ramírez, C.; Danilkin, I.V.; Mathieu, V.; Szczepaniak, A.P.; JPAC Collaboration. Understanding the Nature of Λ(1405) through Regge Physics. Phys. Rev. D 2016, 93, 074015. [Google Scholar] [CrossRef]
- Masjuan, P.; Arriola, E.R. Regge trajectories of excited baryons, quark-diquark models, and quark-hadron duality. Phys. Rev. D 2017, 96, 054006. [Google Scholar] [CrossRef]
- Silva-Castro, J.; Fernández-Ramírez, C.; Albaladejo, M.; Danilkin, I.; Jackura, A.; Mathieu, V.; Nys, J.; Pilloni, A.; Szczepaniak, A.; JPAC Collaboration. Regge phenomenology of the N* and Δ* poles. Phys. Rev. D 2019, 99, 034003. [Google Scholar] [CrossRef]
- Jia, D.; Liu, W.N.; Hosaka, A. Regge behaviors in orbitally excited spectroscopy of charmed and bottom baryons. Phys. Rev. D 2020, 101, 034016. [Google Scholar] [CrossRef]
- Jia, D.; Pan, J.H.; Pang, C.Q. A Mixing Coupling Scheme for Spectra of Singly Heavy Baryons with Spin-1 Diquarks in P-waves. Eur. Phys. J. C 2021, 81, 434. [Google Scholar] [CrossRef]
- Cheng, H.Y. Charmed baryon physics circa 2021. Chin. J. Phys. 2022, 78, 324–362. [Google Scholar] [CrossRef]
- Jakhad, P.; Oudichhya, J.; Gandhi, K.; Rai, A.K. Identification of newly observed singly charmed baryons using the relativistic flux tube model. Phys. Rev. D 2023, 108, 014011. [Google Scholar] [CrossRef]
- Song, Y.; Jia, D.; Zhang, W.; Hosaka, A. Low-lying doubly heavy baryons: Regge relation and mass scaling. Eur. Phys. J. C 2023, 83, 1. [Google Scholar] [CrossRef]
- Jakhad, P.; Oudichhya, J.; Rai, A.K. Interpretation of recently discovered single bottom baryons in the relativistic flux tube model. Phys. Rev. D 2024, 110, 094005. [Google Scholar] [CrossRef]
- Pan, J.H.; Pan, J. Investigation of the mass spectra of singly heavy baryons ΣQ, , and ΩQ(Q = c, b) in the Regge trajectory model. Phys. Rev. D 2024, 109, 076010. [Google Scholar] [CrossRef]
- Iwasaki, M.; Fukutome, T. Tetraquark particle in the string model. Phys. Rev. D 2005, 72, 094016. [Google Scholar] [CrossRef]
- Cotugno, G.; Faccini, R.; Polosa, A.D.; Sabelli, C. Charmed Baryonium. Phys. Rev. Lett. 2010, 104, 132005. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jia, D. Mass spectra of doubly heavy tetraquarks in diquark-antidiquark picture. Commun. Theor. Phys. 2023, 75, 055201. [Google Scholar] [CrossRef]
- Sonnenschein, J.; Green, M.M. Taming the Zoo of Tetraquarks and Pentaquarks using the HISH Model. arXiv 2024, arXiv:2401.01621. Available online: https://arxiv.org/abs/2401.01621 (accessed on 6 June 2025).
- Iwasaki, M.; Takagi, F. Pentaquark in the flux tube model. Phys. Rev. D 2008, 77, 054020. [Google Scholar] [CrossRef]
- Deng, C.; Ping, J.; Yang, Y.; Wang, F. Baryonia and near-threshold enhancements. Phys. Rev. D 2013, 88, 074007. [Google Scholar] [CrossRef]
- Andreev, O. Doubly heavy dibaryons as seen by string theory. Phys. Rev. D 2024, 109, 106001. [Google Scholar] [CrossRef]
- Buisseret, F.; Semay, C. Two- and three-body descriptions of hybrid mesons. Phys. Rev. D 2006, 74, 114018. [Google Scholar] [CrossRef]
- Isgur, N.; Paton, J.E. Flux-tube model for hadrons in QCD. Phys. Rev. D 1985, 31, 2910. [Google Scholar] [CrossRef]
- Iwasaki, M.; Nawa, S.I.; Sanada, T.; Takagi, F. Flux tube model for glueballs. Phys. Rev. D 2003, 68, 074007. [Google Scholar] [CrossRef]
- Boschi-Filho, H.; Braga, N.R.F.; Carrion, H.L. Glueball Regge trajectories from gauge-string duality and the pomeron. Phys. Rev. D 2006, 73, 047901. [Google Scholar] [CrossRef]
- Szanyi, I.; Jenkovszky, L.; Schicker, R.; Svintozelskyi, V. Pomeron/glueball and odderon/oddball trajectories. Nucl. Phys. A 2020, 998, 121728. [Google Scholar] [CrossRef]
- Song, H.; Xie, J.Q.; Chen, J.K. Regge trajectories for the triply heavy triquarks. Eur. Phys. J. C 2025, 85, 482. [Google Scholar] [CrossRef]
- Eichten, E.J.; Quigg, C. Heavy-quark symmetry implies stable heavy tetraquark mesons QiQj. Phys. Rev. Lett. 2017, 119, 202002. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.C.; Wang, Z.G. Hunting for the prospective Tcc family based on the diquark-antidiquark configuration. Nucl. Phys. B 2025, 1012, 116828. [Google Scholar] [CrossRef]
Notation | Mass | Decay Width | Channel | Experiment |
---|---|---|---|---|
+ | ATLAS (Model A) [22] | |||
+ | CMS (No interference) [23] | |||
+ | ATLAS (Model A) [22] | |||
+ | CMS (Interference) [23] | |||
+ | ATLAS (Model B) [22] | |||
+ | LHCb (Model II) [21] | |||
+ | CMS (Interference) [23] | |||
+ | ATLAS (Model A) [22] | |||
+ | LHCb (Model II) [21] | |||
+ | LHCb (Model I) [21] | |||
+ | ATLAS (Model B) [22] | |||
+ | CMS (No interference) [23] | |||
+(2S) | ATLAS (Model ) [22] | |||
+ | CMS (Interference) [23] | |||
+(2S) | ATLAS (Model ) [22] | |||
+ | CMS (No interference) [23] |
State | Experiment | Theory | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PDG [1] | Our | [31] | [34] | [26] | [36] | [29] | [37] | [32] | [27] | [35] | [38] | [28] | [30] | [39] | [40] | [33] | |||
2984.1(4) | 2984 | 2975 | 2990 | 2982 | 2979.9 | 2981.7 | 2979 | 2981 | 2978.4 | 2990 | 2984 | 2989 | 2995 | 2981 | 2986.3 | 2992.1 | |||
3096.900(6) | 3097 | 3098 | 3097 | 3090 | 3096.9 | 3096.9 | 3097 | 3096 | 3087.7 | 3096 | 3097 | 3094 | 3094 | 3096 | 3094.1 | 3104.0 | |||
3414.71(30) | 3417 | 3445 | 3436 | 3424 | 3416.3 | 3415.2 | 3433 | 3413 | 3366.3 | 3452 | 3415 | 3428 | 3457 | 3464 | 3434.4 | 3446.4 | |||
3525.37(14) | 3525 | 3517 | 3507 | 3516 | 3526.4 | 3523.7 | 3519 | 3525 | 3526.9 | 3515 | 3526 | 3470 | 3534 | 3538 | 3517.2 | 3499.3 | |||
3510.67(5) | 3506 | 3510 | 3494 | 3505 | 3511.7 | 3510.6 | 3510 | 3511 | 3517.7 | 3504 | 3521 | 3468 | 3523 | 3530 | 3514.2 | 3504.2 | |||
3556.17(7) | 3558 | 3550 | 3526 | 3556 | 3556.9 | 3556.2 | 3554 | 3555 | 3559.3 | 3532 | 3553 | 3480 | 3556 | 3571 | 3556.2 | 3532.1 | |||
3637.7(9) | 3638 | 3623 | 3627 | 3630 | 3639.6 | 3619.2 | 3623 | 3635 | 3646.9 | 3643 | 3637 | 3602 | 3606 | 3642 | 3633.1 | 3634.6 | |||
3686.097(11) | 3686 | 3676 | 3685 | 3672 | 3685.5 | 3686.1 | 3673 | 3685 | 3684.7 | 3703 | 3679 | 3681 | 3649 | 3683 | 3690.0 | 3691.3 | |||
3773.7(7) | 3760 | 3819 | 3775 | 3785 | 3735.1 | 3789.4 | 3787 | 3783 | 3808.8 | 3796 | 3792 | 3775 | 3799 | 3830 | 3817.1 | 3751.4 | |||
3794 | 3837 | 3793 | 3799 | 3819.2 | 3822.2 | 3796 | 3807 | 3815.1 | 3812 | 3805 | 3765 | 3802 | 3848 | 3826.3 | 3809.6 | ||||
3823.51(34) | 3791 | 3838 | 3790 | 3800 | 3812.3 | 3822.1 | 3798 | 3795 | 3820.1 | 3810 | 3807 | 3772 | 3805 | 3848 | 3830.3 | 3803.4 | |||
3842.71(20) | 3810 | 3849 | 3802 | 3806 | 3854.0 | 3844.8 | 3799 | 3813 | 3812.6 | 3808 | 3755 | 3801 | 3859 | 3829.3 | 3841.5 | ||||
3922.1(1.8) | 3897 | 3916 | 3852 | 3859.9 | 3864.3 | 3842 | 3870 | 3842.7 | 3909 | 3848 | 3897 | 3866 | 3896 | 3857.5 | 3915.1 | ||||
3916 | 3956 | 3924 | 3934 | 3916.6 | 3963.2 | 3908 | 3926 | 3941.9 | 3956 | 3916 | 3943 | 3936 | 3933 | 3927.6 | 3938.1 | ||||
3916 | 3953 | 3913 | 3925 | 3920.7 | 3950.0 | 3901 | 3906 | 3935.0 | 3947 | 3914 | 3938 | 3925 | 3929 | 3924.7 | 3951.1 | ||||
3922.5(1.0) | 3919 | 3979 | 3972 | 3937.4 | 3992.3 | 3937 | 3949 | 3973.1 | 3969 | 3937 | 3955 | 3956 | 3952 | 3965.2 | 3965.3 | ||||
4007 | 4064 | 4043 | 3945.9 | 4052.5 | 3991 | 3989 | 4058.0 | 4054 | 4004 | 4058 | 4000 | 4013 | 4011.9 | 4061.4 | |||||
4040(4) | 4037 | 4100 | 4050 | 4072 | 4038.0 | 4102.0 | 4022 | 4039 | 4087.0 | 4097 | 4030 | 4129 | 4036 | 4035 | 4048.2 | 4099.3 | |||
4007 | 4092 | 4029 | 4049.9 | 4041 | 4059.7 | 4043 | 3990 | 4070 | 4064.8 | 4000.8 | |||||||||
4018 | 4094 | 4026 | 4066.9 | 4071 | 4040.8 | 4017 | 4074 | 4056.6 | 4056.1 | ||||||||||
4020 | 4097 | 4029 | 4069.0 | 4068 | 4047.6 | 4012 | 4075 | 4061.2 | 4051.6 | ||||||||||
4024 | 4095 | 4021 | 4084.3 | 4093 | 4024.7 | 4036 | 4076 | 4048.6 | 4088.8 | ||||||||||
4191(5) | 4122 | 4194 | 4103 | 4142 | 4159.2 | 4089 | 4150 | 4154.4 | 4153 | 4095 | 4188 | 4145 | 4125 | 4123.3 | 4150.0 | ||||
4127 | 4208 | 4158 | 4196.9 | 4099 | 4196 | 4164.9 | 4166 | 4108 | 4182 | 4150 | 4137 | 4135.3 | 4177.2 | ||||||
4129 | 4208 | 4158 | 4195.8 | 4100 | 4190 | 4168.7 | 4164 | 4109 | 4188 | 4152 | 4137 | 4137.5 | 4176.4 | ||||||
4127 | 4217 | 4167 | 4218.9 | 4103 | 4220 | 4166.1 | 4112 | 4176 | 4151 | 4144 | 4141.8 | 4197.6 | |||||||
4226 | 4292 | 4202 | 4131 | 4301 | 4207.6 | 4242 | 4146 | 4296 | 4197 | 4177 | 4151.5 | 4282.7 | |||||||
4229 | 4318 | 4279 | 4184 | 4337 | 4309.7 | 4278 | 4193 | 4344 | 4269 | 4200 | 4209.9 | 4291.2 | |||||||
4232 | 4317 | 4271 | 4178 | 4319 | 4298.7 | 4272 | 4192 | 4338 | 4257 | 4197 | 4206.9 | 4307.7 | |||||||
4228 | 4337 | 4317 | 4208 | 4354 | 4352.4 | 4211 | 4358 | 4290 | 4213 | 4242.7 | 4315.4 | ||||||||
4312 | 4425 | 4384 | 4250 | 4401 | 4391.4 | 4264 | 4448 | 4328 | 4260 | 4269.3 | 4407.3 | ||||||||
4415(5) | 4333 | 4450 | 4307 | 4406 | 4446.8 | 4273 | 4427 | 4411.4 | 4389 | 4281 | 4514 | 4362 | 4274 | 4294.4 | 4434.0 |
State | This Work | Other Approaches | State | This Work | Other Approaches | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass | Candidate | [56] | [58] | [60] | [61] | [62] 1 | [62] 2 | Mass | Candidate | [57] | [58] | [61] | [62] 1 | [62] 2 | ||||
6192 | 5969.4 | 5883 | 6190 | 5942 | 5989 | 5944 | 7034 | 7035 | 7046 | |||||||||
6250 | 6020.9 | 6120 | 6271 | 5989 | 6115 | 6001 | 7044 | 7040 | 7051 | |||||||||
6365 | 6115.4 | 6246 | 6367 | 6082 | 6260 | 6105 | 7041 | 7039 | 7050 | |||||||||
6573 | 6480.4 | 6596 | 6628 | 6462 | 6545 | 6478 | 7054 | 7046 | 7056 | |||||||||
6666 | 6577.1 | 6580 | 6631 | 6555 | 6605 | 6584 | 7055 | 7047 | 7057 | |||||||||
6661 | 6577.4 | 6634 | 6556 | 6604 | 6584 | 7050 | 7045 | 7055 | ||||||||||
6560 | 6495.4 | 6584 | 6635 | 6461 | 6544 | 6495 | 7059 | 7049 | 7059 | |||||||||
6688 | 6609.9 | 6644 | 6589 | 6623 | 6618 | 7059 | 7050 | 7060 | ||||||||||
6669 | 6600.2 | 6648 | 6579 | 6618 | 6609 | 7064 | 7052 | 7061 | ||||||||||
6710 | 6641.2 | 6664 | 6625 | 6643 | 6648 | 7128 | 7120.8 | 7125 | 7092 | 7124 | ||||||||
6745 | 6663.3 | 6573 | 6782 | 6644 | 6644 | 6667 | 7134 | 7131.8 | 7128 | 7103 | 7137 | |||||||
6764 | 6674.5 | 6669 | 6816 | 6656 | 6683 | 6679 | 7132 | 7128.4 | 7125 | 7098 | 7133 | |||||||
6803 | 6698.1 | 6739 | 6868 | 6678 | 6744 | 6703 | 7139 | 7146.0 | 7126 | 7113 | 7154 | |||||||
6828 | 6820.4 | 6827 | 6899 | 6831 | 6826 | 7140 | 7145.0 | 7113 | 7155 | |||||||||
6853 | 6832.8 | 6829 | 6909 | 6846 | 6841 | 7137 | 7140.9 | 7125 | 7108 | 7147 | ||||||||
6840 | 6828.4 | 6827 | 6904 | 6839 | 6835 | 7141 | 7154.5 | 7118 | 7163 | |||||||||
6877 | 6847.7 | 6827 | 6921 | 6860 | 6859 | 7142 | 7154.5 | 7118 | 7163 | |||||||||
6877 | 6846.4 | 6920 | 6860 | 6860 | 7143 | 7163.3 | 7124 | 7172 | ||||||||||
6862 | 6841.5 | 6827 | 6915 | 6853 | 6850 | 7216 | 7236 | 7154 | 7151 | 7166 | ||||||||
6888 | 6855.8 | 6932 | 6867 | 6867 | 7220 | 7226 | 7222 | 7175 | 7240 | |||||||||
6884 | 6855.5 | 6929 | 6867 | 6867 | 7221 | 7221 | 7175 | 7239 | ||||||||||
6899 | 6864.0 | 6945 | 6875 | 6876 | 7216 | 7229 | 7151 | 7151 | 7173 | |||||||||
6959 | 6866.5 | 6953 | 7100 | 6852 | 6902 | 6867 | 7220 | 7244 | 7184 | 7263 | ||||||||
6973 | 6944.1 | 6940 | 7091 | 6926 | 6937 | 6951 | 7222 | 7237 | 7181 | 7256 | ||||||||
6974 | 6943.9 | 7099 | 6927 | 6937 | 6951 | 7221 | 7272 | 7194 | 7283 | |||||||||
6958 | 6875.6 | 6943 | 7113 | 6850 | 6902 | 6877 | 7285 | 7237 | 7213 | 7316 | ||||||||
6976 | 6970.4 | 7098 | 6952 | 6949 | 6977 | 7291 | 7293 | 7228 | 7321 | |||||||||
6976 | 6962.1 | 7113 | 6945 | 6946 | 6970 | 7304 | 7257 | 7333 | ||||||||||
6979 | 6996.7 | 7112 | 6983 | 6963 | 7002 | |||||||||||||
7043 | 6948 | 7259 | 7011 | 6979 | 7031 | |||||||||||||
7053 | 7016 | 7287 | 7018 | 7001 | 7038 | |||||||||||||
7073 | 7071 | 7333 | 7033 | 7040 | 7054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.-C.; Wang, Z.-G.; Zhou, J.-W. Exploring the Interpretations of Charmonia and cc Tetraquarks in the Relativistic Flux Tube Model. Symmetry 2025, 17, 931. https://doi.org/10.3390/sym17060931
Dong W-C, Wang Z-G, Zhou J-W. Exploring the Interpretations of Charmonia and cc Tetraquarks in the Relativistic Flux Tube Model. Symmetry. 2025; 17(6):931. https://doi.org/10.3390/sym17060931
Chicago/Turabian StyleDong, Wen-Chao, Zhi-Gang Wang, and Jian-Wen Zhou. 2025. "Exploring the Interpretations of Charmonia and cc Tetraquarks in the Relativistic Flux Tube Model" Symmetry 17, no. 6: 931. https://doi.org/10.3390/sym17060931
APA StyleDong, W.-C., Wang, Z.-G., & Zhou, J.-W. (2025). Exploring the Interpretations of Charmonia and cc Tetraquarks in the Relativistic Flux Tube Model. Symmetry, 17(6), 931. https://doi.org/10.3390/sym17060931