Research on Multi-Objective Green Vehicle Routing Problem with Time Windows Based on the Improved Non-Dominated Sorting Genetic Algorithm III
Abstract
1. Introduction
2. Mathmatical Model of MOGVRPTW
2.1. Problem Description
2.2. Objective Function
2.2.1. Vehicle Delivery Cost
2.2.2. Vehicle Carbon Emission
2.2.3. Average Customer Satisfaction
2.3. Optimization Model
3. INSGA-III for MOGVRPTW
- Population Initialization: The population is initialized using integer encoding, with individuals randomly generated, and the fitness value of each individual is calculated.
- Selection Process: The hybrid NSGA-II uses a combination of crowding distance-based selection and tournament selection to choose individuals from the current population, ensuring that high-quality genes are involved in the subsequent crossover and mutation processes.
- Crossover and Mutation: Leveraging the global search capability of NSGA-III, the population undergoes crossover and mutation, and reference points are generated.
- Local Search: The 2-opt local search strategy is applied to the selected high-quality individuals from the previous step to avoid losing superior individuals.
- Termination Check: Determine whether the algorithm has terminated by checking if the specified number of iterations has been reached. If so, the algorithm terminates; otherwise, it continues iterating.
3.1. Encoding and Decoding
3.2. Selection Operator
- Calculate the Pareto dominance ranks and normalized crowding distances simultaneously for all population members to establish dual fitness criteria, the non-dominated rank, and crowding distance for each individual in the population.
- For each selection event, randomly select a group of individuals (tournament size), and select the individual with the lowest non-dominated rank from this group.
- If there are multiple individuals within the tournament group that have the same lowest non-dominated rank, select the one with the largest crowding distance to enhance diversity in the solution set.
3.3. Crossover Operator
3.4. Mutation Operator
3.5. Local Search Strategy
Algorithm 1: 2-Opt. Swap Function |
Input: ; Output: Best ; function 2-Opt.Swap(, i, j) do ←; ← ++; Calculate ; Return ; end for to do for to do ; if then ; end end end Return the best (). |
4. Computational Experiments
4.1. Experimental Parameter Settings
4.2. Algorithm Performance Metrics
4.3. Algorithm Parameter Settings
4.4. Algorithm Comparison Experiment
5. Real-World Case Study
5.1. Experimental Data Processing
5.2. Algorithm Comparison Experiment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asghari, M.; Al-e-hashem, S.M.J.M. Green vehicle routing problem: A state-of-the-art review. Int. J. Prod. Econ. 2021, 9, 203–209. [Google Scholar] [CrossRef]
- Moghdani, R.; Salimifard, K.; Demir, E. The green vehicle routing problem: A systematic literature review. J. Clean. Prod. 2021, 279, 123691. [Google Scholar] [CrossRef]
- Soleimani, H.; Chaharlang, Y.; Ghaderi, H. Collection and distribution of returned-remanufactured products in a vehicle routing problem with pickup and delivery considering sustainable and green criteria. J. Clean. Prod. 2018, 172, 960–970. [Google Scholar] [CrossRef]
- Macrina, G.; Laporte, G.; Guerriero, F.; Pugliese, L.D.P. An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows. Eur. J. Oper. Res. 2019, 276, 971–982. [Google Scholar] [CrossRef]
- Sadati, M.E.H.; Çatay, B. A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem. Transport. Res. E-Log. 2021, 149, 102293. [Google Scholar] [CrossRef]
- Toro, E.M.; Franco, J.F.; Echeverri, M.G.; Guimarães, F.G. A multi-objective model for the green capacitated location-routing problem considering environmental impact. Comput. Ind. Eng. 2017, 110, 114–125. [Google Scholar] [CrossRef]
- Poonthalir, G.; Nadarajan, R. A fuel efficient green vehicle routing problem with varying speed constraint (F-GVRP). Expert Syst. Appl. 2018, 100, 131–444. [Google Scholar] [CrossRef]
- Long, J.; Sun, Z.; Pardalos, P.M.; Hong, Y.; Zhang, S.; Li, C. A hybrid multi-objective genetic local search algorithm for the prize-collecting vehicle routing problem. Inf. Sci. 2019, 478, 40–61. [Google Scholar] [CrossRef]
- Anderluh, A.; Nolz, P.C.; Hemmelmayr, V.C.; Crainic, T.G. Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in urban logistics. Eur. J. Oper. Res. 2021, 289, 940–958. [Google Scholar] [CrossRef]
- Ziaei, Z.; Jabbarzadeh, A. A multi-objective robust optimization approach for green location-routing planning of multi-modal transportation systems under uncertainty. J. Clean. Prod. 2021, 291, 215293. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, Y.; Cao, Z.; Gao, K.; Xiao, J.; Song, W.; Zhang, F. MIMOA: A membrane-inspired multi-objective algorithm for green vehicle routing problem with stochastic demands. Swarm Evol. Comput. 2021, 60, 100767. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Xu, W.; Wang, W. A novel multi-objective optimization model for the vehicle routing problem with drone delivery and dynamic flight endurance. Comput. Ind. Eng. 2022, 173, 108679. [Google Scholar] [CrossRef]
- Yin, N. Multiobjective optimization for vehicle routing optimization problem in low-carbon intelligent transportation. IEEE Trans. Intell. Transp. Syst. 2022, 24, 13161–13170. [Google Scholar] [CrossRef]
- Rezaei, N.; Ebrahimnejad, S.; Moosavi, A.; Nikfarjam, A. A green vehicle routing problem with time windows considering the heterogeneous fleet of vehicles: Two metaheuristic algorithms. Eur. J. Ind. Eng. 2019, 13, 507–535. [Google Scholar]
- Xu, Z.; Elomri, A.; Pokharel, S.; Mutlu, F. A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows. Comput. Ind. Eng. 2019, 137, 106011. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, S.; Wang, J.; Huang, M. A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows. Transport. Res. B-Meth. 2019, 122, 511–527. [Google Scholar] [CrossRef]
- Ren, X.; Huang, H.; Feng, S.; Liang, G. An improved variable neighborhood search for bi-objective mixed-energy fleet vehicle routing problem. J. Clean. Prod. 2020, 275, 124155. [Google Scholar] [CrossRef]
- Liu, Y.; Roberto, B.; Zhou, J.; Yu, Y.; Zhang, Y.; Sun, W. Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows. Eur. J. Oper. Res. 2023, 310, 133–155. [Google Scholar] [CrossRef]
- Ghannadpour, S.F.; Zarrabi, A. Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing. Swarm Evol. Comput. 2019, 44, 728–6747. [Google Scholar] [CrossRef]
- Song, M.X.; Li, J.Q.; Han, Y.Q.; Han, Y.Y.; Liu, L.L.; Sun, Q. Metaheuristics for solving the vehicle routing problem with the time windows and energy consumption in cold chain logistics. Appl. Soft Comput. 2020, 95, 106561. [Google Scholar] [CrossRef]
- Xu, X.; Wang, C.; Zhou, P. GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective. Int. J. Prod. Econ. 2021, 235, 108078. [Google Scholar] [CrossRef]
- Zarouk, Y.; Mahdavi, I.; Rezaeian, J.; Santos-Arteaga, F.J. A novel multi-objective green vehicle routing and scheduling model with stochastic demand, supply, and variable travel times. Comput. Oper. Res. 2022, 141, 105698. [Google Scholar] [CrossRef]
- Elgharably, N.; Easa, S.; Nassef, A.; El Damatty, A. Stochastic multi-objective vehicle routing model in green environment with customer satisfaction. IEEE Trans. Intell. Transp. Syst. 2022, 24, 1337–1355. [Google Scholar] [CrossRef]
- Kuo, R.J.; Luthfiansyah, M.F.; Masruroh, N.A. Application of improved multi-objective particle swarm optimization algorithm to solve disruption for the two-stage vehicle routing problem with time windows. Expert Syst. Appl. 2023, 225, 120009. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, Q.; Kaku, I.; Xu, Y. Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput. Oper. Res. 2012, 39, 1419–1431. [Google Scholar] [CrossRef]
- Hickman, A.; Hassel, D.; Joumard, R.; Samaras, Z.; Sorenson, S. Methodology for Calculating Transport Emissions and Energy Consumption; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 1999; pp. 1–362. [Google Scholar]
- Yang, F.; Tao, F. A bi-objective optimization VRP model for cold chain logistics: Enhancing cost efficiency and customer satisfaction. IEEE Access 2023, 11, 127043–127056. [Google Scholar] [CrossRef]
- Yang, B.; Hu, Z.H.; Wei, C.; Li, S.Q.; Zhao, L.; Jia, S. Routing with time-windows for multiple environmental vehicle types. Comput. Ind. Eng. 2015, 89, 150–161. [Google Scholar] [CrossRef]
- Solomon, M.M. VRPTW Benchmark Problems. Available online: https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/ (accessed on 27 April 2025).
- Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms–a comparative case study. In Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, 27–30 September 1998; pp. 292–310. [Google Scholar]
- Mohammadi, M.; Jolai, F.; Tavakkoli-Moghaddam, R. Solving a new stochastic multi-mode p-hub covering location problem considering risk by a novel multi-objective algorithm. Appl. Math. Model. 2013, 37, 10053–10073. [Google Scholar] [CrossRef]
- Coello Coello, C.A.; Reyes Sierra, M. A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In Proceedings of the Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, 26–30 April 2004; pp. 688–697. [Google Scholar]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef]
- Amini, A.; Tavakkoli-Moghaddam, R. A bi-objective truck scheduling problem in a cross-docking center with probability of breakdown for trucks. Comput. Ind. Eng. 2016, 96, 180–191. [Google Scholar] [CrossRef]
Symbol | Definition | Symbol | Definition |
---|---|---|---|
Set of vehicles, | ; | Arrival time of the k-th vehicle at customer i; | |
Set of customers, . In particular, the depot is considered as customer 0, denoted as {0}; | Driving time of the k-th vehicle on arc ; | ||
Unit fuel cost | ; | Service time at customer i; | |
Unit vehicle activation cost; | Specified service time window at customer i; | ||
Unit distance transportation cost; | Expected service time window at customer i; | ||
Distance travel between customer i and j; | Penalty cost per unit time for waiting before the customer’s expected service time ; | ||
R | Vehicle capacity; | Penalty cost per unit time for waiting after the customer’s expected service time ; | |
Demand of customer i; | Customer satisfaction function; | ||
Actual load of the k-th vehicle on arc ; | If the k-th vehicle is traveling from customer i to j, the value is set to 1; otherwise, it is set to 0. | ||
Average speed of the vehicle on arc | If the k-th vehicle is in serve at customer i, the value is set to 1; otherwise, it is set to 0. |
Parameter | Value | Parameter | Value |
---|---|---|---|
10 CNY/L | 20 CNY/h | ||
100 CNY/vehicle | 60 CNY/h | ||
2 CNY/km | 0.122 L/km | ||
R | 400 kg | 0.388 L/km | |
40 km/h |
Parameters | Parameter Levels | ||
---|---|---|---|
1 | 2 | 3 | |
40 | 60 | 80 | |
0.6 | 0.7 | 0.8 | |
0.1 | 0.2 | 0.3 |
Experiments | Parameters | |||
---|---|---|---|---|
1 | 40 | 0.6 | 0.1 | 0.8011 |
2 | 40 | 0.7 | 0.3 | 0.7820 |
3 | 40 | 0.8 | 0.2 | 0.6713 |
4 | 60 | 0.6 | 0.4 | 0.7245 |
5 | 60 | 0.7 | 0.2 | 0.8103 |
6 | 60 | 0.8 | 0.3 | 0.7403 |
7 | 80 | 0.6 | 0.0 | 0.7962 |
8 | 80 | 0.7 | 0.1 | 0.8911 |
9 | 80 | 0.8 | 0.3 | 0.8033 |
Algorithm | Metric | 25 Customer Points | 50 Customer Points | 100 Customer Points | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C102 | R201 | RC202 | C102 | R201 | RC202 | C102 | R201 | RC201 | ||
INSGA-III | 0.8612 | 0.8487 | 0.8176 | 0.8581 | 0.8299 | 0.8113 | 0.8285 | 0.7526 | 0.8035 | |
0.0646 | 0.0534 | 0.0322 | 0.0609 | 0.0326 | 0.0374 | 0.0209 | 0.0279 | 0.0319 | ||
0.0754 | 0.0463 | 0.0518 | 0.1228 | 0.1238 | 0.1127 | 0.1733 | 0.2062 | 0.2569 | ||
1.2332 | 1.5519 | 1.5007 | 1.5277 | 1.5343 | 1.4416 | 1.2087 | 1.3454 | 1.1194 | ||
0.7344 | 0.5198 | 0.6604 | 0.6581 | 0.6300 | 0.5113 | 0.6285 | 0.7526 | 0.6035 | ||
0.5248 | 0.5987 | 0.5889 | 0.6609 | 0.6326 | 0.6374 | 0.6209 | 0.7879 | 0.6519 | ||
0.5552 | 0.6669 | 0.6001 | 0.5228 | 0.6238 | 0.5900 | 0.6733 | 0.6662 | 0.5969 | ||
0.7115 | 0.6224 | 0.7009 | 0.8581 | 0.8229 | 0.8113 | 0.8285 | 0.8269 | 0.8069 | ||
0.7905 | 0.8021 | 0.8432 | 0.9800 | 0.7736 | 0.9493 | 0.9227 | 0.8001 | 0.8889 | ||
NSGA-III | 0.8307 | 0.7400 | 0.7154 | 0.7741 | 0.7020 | 0.7948 | 0.8132 | 0.6034 | 0.6853 | |
0.0799 | 0.0718 | 0.0473 | 0.0634 | 0.0441 | 0.0391 | 0.0428 | 0.0482 | 0.0357 | ||
0.0998 | 0.1975 | 0.1537 | 0.1795 | 0.2007 | 0.1275 | 0.1861 | 0.2419 | 0.2649 | ||
1.0079 | 1.3763 | 1.4035 | 1.2873 | 1.1271 | 1.0954 | 1.2207 | 1.0768 | 0.7915 | ||
0.4556 | 0.3224 | 0.4445 | 0.2977 | 0.3218 | 0.3511 | 0.3369 | 0.2237 | 0.5214 | ||
NSGA-II | 0.8449 | 0.7197 | 0.7309 | 0.7373 | 0.7596 | 0.7553 | 0.7789 | 0.5302 | 0.6921 | |
0.1724 | 0.0631 | 0.0549 | 0.0980 | 0.0386 | 0.0502 | 0.0448 | 0.0366 | 0.0368 | ||
0.0858 | 0.1544 | 0.1718 | 0.1633 | 0.1514 | 0.1703 | 0.1801 | 0.2771 | 0.2815 | ||
1.5378 | 1.1901 | 1.4302 | 0.9474 | 1.4216 | 1.4320 | 1.2862 | 0.9700 | 0.8674 | ||
0.4008 | 0.3664 | 0.3997 | 0.3337 | 0.3689 | 0.3766 | 0.3264 | 0.3998 | 0.2916 | ||
SPEA2 | 0.8282 | 0.8059 | 0.6707 | 0.7620 | 0.7707 | 0.7891 | 0.6234 | 0.7095 | 0.6639 | |
0.1100 | 0.0913 | 0.1082 | 0.1188 | 0.0903 | 0.0492 | 0.0402 | 0.1032 | 0.0849 | ||
0.0856 | 0.0867 | 0.1908 | 0.2200 | 0.1409 | 0.1373 | 0.3271 | 0.2889 | 0.2642 | ||
0.7682 | 1.3905 | 1.0673 | 1.5508 | 1.1836 | 1.3122 | 0.7633 | 1.1061 | 0.9816 | ||
0.4112 | 0.2334 | 0.3445 | 0.3658 | 0.3564 | 0.3236 | 0.3967 | 0.3226 | 0.3015 | ||
MOPSO | 0.6228 | 0.6530 | 0.5543 | 0.5067 | 0.5737 | 0.4935 | 0.4915 | 0.3750 | 0.3873 | |
0.0706 | 0.0623 | 0.0614 | 0.1186 | 0.0682 | 0.0673 | 0.0529 | 0.0972 | 0.0811 | ||
0.2507 | 0.2296 | 0.3067 | 0.5744 | 0.3977 | 0.5101 | 0.5715 | 0.8011 | 0.6921 | ||
1.1987 | 1.1027 | 0.8892 | 0.7300 | 1.1156 | 0.9496 | 0.6604 | 1.1061 | 0.9571 | ||
0.1446 | 0.2664 | 0.3001 | 0.2097 | 0.2698 | 0.2359 | 0.2016 | 0.1854 | 0.1993 | ||
MOEA/D | 0.5805 | 0.7579 | 0.7484 | 0.5476 | 0.7861 | 0.7570 | 0.5267 | 0.5978 | 0.5622 | |
0.1572 | 0.0973 | 0.0393 | 0.0782 | 0.1020 | 0.0799 | 0.0650 | 0.1143 | 0.0880 | ||
0.2969 | 0.1516 | 0.2106 | 0.1572 | 0.1342 | 0.1499 | 0.5352 | 0.3007 | 0.3690 | ||
1.2156 | 0.8455 | 1.1315 | 0.7462 | 1.0015 | 0.9947 | 0.6734 | 1.1236 | 0.9678 | ||
0.6235 | 0.4677 | 0.4610 | 0.3632 | 0.5563 | 0.5246 | 0.3231 | 0.4977 | 0.5220 |
Algorithm | Objective | 25 Customer Points | 50 Customer Points | 100 Customer Points | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C102 | R201 | RC202 | C102 | R201 | RC202 | C102 | R201 | RC201 | ||
INSGA-III | 2205 | 8072 | 6768 | 12,025 | 15,491 | 15,882 | 34,458 | 33,544 | 47,715 | |
257.46 | 660.59 | 457.98 | 175.81 | 486.88 | 503.62 | 552.44 | 991.36 | 1070.13 | ||
0.9972 | 0.8436 | 0.9465 | 0.9265 | 0.8651 | 0.9095 | 0.9124 | 0.8651 | 0.8549 | ||
NSGA-III | 3812 | 14,681 | 10,597 | 30,150 | 23,108 | 27,938 | 182,880 | 49,890 | 61,729 | |
318.41 | 757.17 | 620.31 | 223.57 | 553.93 | 513.61 | 652.32 | 1097.36 | 1223.73 | ||
0.9335 | 0.8036 | 0.9154 | 0.7984 | 0.7965 | 0.7989 | 0.6608 | 0.7300 | 0.7470 | ||
NSGA-II | 5042 | 14,965 | 9422 | 35,704 | 21,448 | 27,903 | 153,007 | 47,380 | 60,521 | |
280.53 | 738.42 | 594.12 | 212.82 | 532.56 | 544.80 | 661.33 | 1115.94 | 1150.09 | ||
0.9022 | 0.7819 | 0.8865 | 0.8241 | 0.8027 | 0.8348 | 0.6928 | 0.7735 | 0.7891 | ||
SPEA2 | 9621 | 9187 | 14,089 | 26,840 | 18,002 | 21,207 | 94,899 | 41,947 | 59,150 | |
287.52 | 674.51 | 545.42 | 233.65 | 505.13 | 526.54 | 1101.46 | 1008.47 | 1293.55 | ||
0.8647 | 0.8346 | 0.7815 | 0.8574 | 0.7998 | 0.8654 | 0.7009 | 0.8199 | 0.7882 | ||
MOPSO | 7646 | 17,346 | 14,094 | 57,373 | 25,734 | 34,568 | 159,934 | 68,789 | 84,336 | |
383.56 | 811.06 | 926.69 | 405.46 | 631.18 | 840.06 | 1471.97 | 1200.49 | 1633.65 | ||
0.9229 | 0.6965 | 0.7603 | 0.7249 | 0.7007 | 0.6934 | 0.6094 | 0.6340 | 0.6574 | ||
MOEA/D | 3729 | 9927 | 7593 | 14,047 | 15,866 | 16,261 | 69,715 | 43,167 | 52,717 | |
327.00 | 739.95 | 502.98 | 385.00 | 507.88 | 691.06 | 1278.43 | 1102.83 | 1444.01 | ||
0.9511 | 0.7613 | 0.8639 | 0.8511 | 0.8575 | 0.8846 | 0.7701 | 0.8192 | 0.7929 |
Algorithm | Objective | 25 Customer Points | 50 Customer Points | 100 Customer Points | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C102 | R201 | RC202 | C102 | R201 | RC202 | C102 | R201 | RC201 | ||
INSGA-III | 2456 | 8451 | 7265 | 13,495 | 16,389 | 16,004 | 54,962 | 41,019 | 50,715 | |
305.96 | 683.46 | 490.63 | 204.14 | 512.44 | 529.65 | 580.95 | 1084.68 | 1296.83 | ||
0.9152 | 0.8196 | 0.9066 | 0.8998 | 0.8394 | 0.8849 | 0.9064 | 0.8316 | 0.8269 | ||
NSGA-III | 4051 | 15,396 | 11,884 | 32,004 | 25,170 | 28,654 | 194,561 | 51,498 | 62,875 | |
350.45 | 780.53 | 660.05 | 250.68 | 580.66 | 546.33 | 686.94 | 1235.64 | 1345.85 | ||
0.8842 | 0.7844 | 0.8863 | 0.7694 | 0.7698 | 0.7767 | 0.6433 | 0.7198 | 0.7297 | ||
NSGA-II | 5236 | 16,143 | 10,123 | 36,874 | 22,587 | 29,006 | 158,598 | 49,423 | 61,362 | |
315.47 | 750.88 | 613.55 | 229.78 | 559.33 | 583.77 | 702.69 | 1256.82 | 1365.69 | ||
0.8633 | 0.7615 | 0.8440 | 0.7859 | 0.7852 | 0.8160 | 0.6789 | 0.7598 | 0.7766 | ||
SPEA2 | 9938 | 10,112 | 16,051 | 28,758 | 19,964 | 24,159 | 102,357 | 43,156 | 61,005 | |
326.38 | 710.60 | 578.33 | 264.45 | 526.48 | 550.65 | 1192.54 | 1156.56 | 1387.53 | ||
0.8344 | 0.8019 | 0.7516 | 0.7583 | 0.7698 | 0.8423 | 0.6894 | 0.8056 | 0.7648 | ||
MOPSO | 9469 | 18,574 | 15,163 | 58,346 | 27,459 | 34,905 | 167,854 | 70,547 | 88,489 | |
413.89 | 830.59 | 1005.83 | 424.38 | 656.85 | 887.44 | 1569.33 | 1301.58 | 1735.69 | ||
0.8455 | 0.6547 | 0.7342 | 0.7015 | 0.6867 | 0.6698 | 0.5865 | 0.6080 | 0.6136 | ||
MOEA/D | 4089 | 12,784 | 8042 | 15,244 | 17,769 | 17,444 | 73,004 | 46,987 | 55,021 | |
384.05 | 799.98 | 550.16 | 404.50 | 580.64 | 720.04 | 1456.37 | 1301.45 | 1566.88 | ||
0.9002 | 0.7213 | 0.7926 | 0.7969 | 0.8013 | 0.7998 | 0.7043 | 0.7344 | 0.7642 |
Customer Point | X Coordinate | Y Coordinate | Customer Demand (ton) | Service Time (min) | Time Window (h) |
---|---|---|---|---|---|
0 | 30.956 | 8.842 | 0 | 0 | |
1 | 18.692 | 1.528 | 1.08 | 22 | |
2 | 22.197 | 4.345 | 1.68 | 25 | |
3 | 26.275 | 5.505 | 1.5 | 23 | |
4 | 12.078 | 5.638 | 0.7 | 14 | |
5 | 9.72 | 8.348 | 0.58 | 12 | |
6 | 8.279 | 8.691 | 0.31 | 6 | |
7 | 24.772 | 8.793 | 0.8 | 16 | |
8 | 15.096 | 8.924 | 0.83 | 12 | |
9 | 8.991 | 10.484 | 0.5 | 10 | |
10 | 18.086 | 11.073 | 0.98 | 20 | |
11 | 9.182 | 14.126 | 0.5 | 10 | |
12 | 17.378 | 23.541 | 0.87 | 17 | |
13 | 20.219 | 14.498 | 1.45 | 22 | |
14 | 11.988 | 12.037 | 0.65 | 13 | |
15 | 20.771 | 9.748 | 1.6 | 24 | |
16 | 23.793 | 8.079 | 2.21 | 33 | |
17 | 22.388 | 11.148 | 1.75 | 26 | |
18 | 24.273 | 6.217 | 2.3 | 35 | |
19 | 20.904 | 6.195 | 1.63 | 24 | |
20 | 17.467 | 18.673 | 0.9 | 14 | |
21 | 8.738 | 18.799 | 0.43 | 9 | |
22 | 18.621 | 8.057 | 1.05 | 21 | |
23 | 3.311 | 9.515 | 1.63 | 24 | |
24 | 7.661 | 23.979 | 0.25 | 5 | |
25 | 14.63 | 12.356 | 0.76 | 15 | |
26 | 15.677 | 22.054 | 0.83 | 12 | |
27 | 19.378 | 9.56 | 1.1 | 22 | |
28 | 19.745 | 7.877 | 1.2 | 24 | |
29 | 20.008 | 1.984 | 1.25 | 19 |
Algorithm | |||||||||
---|---|---|---|---|---|---|---|---|---|
INSGA-III | 0.8053 | 0.1146 | 0.6540 | 1.3320 | 0.8145 | 0.6368 | 0.5263 | 0.7745 | 0.8045 |
NSGA-III | 0.7156 | 0.2551 | 1.8678 | 1.0609 | 0.1256 | N/A | N/A | N/A | N/A |
NSGA-II | 0.6042 | 0.5369 | 0.6755 | 0.9780 | N/A | 0.1511 | N/A | N/A | N/A |
SPEA2 | 0.7745 | 0.2736 | 0.7552 | 0.6364 | N/A | N/A | 0.4091 | N/A | N/A |
MOPSO | 0.4415 | 0.3244 | 3.0230 | 1.0145 | N/A | N/A | N/A | 0.1646 | N/A |
MOEA/D | 0.4595 | 0.3091 | 0.6945 | 0.9987 | N/A | N/A | N/A | N/A | 0.5000 |
Algorithm | Objective | Results | Objective | Results | Algorithm | Objective | Results | Objective | Results |
---|---|---|---|---|---|---|---|---|---|
INSGA-III | 2262 | 2448 | NSGA-III | 3852 | 4012 | ||||
140.65 | 160.39 | 169.85 | 180.64 | ||||||
1.0000 | 0.9436 | 0.9278 | 0.9006 | ||||||
NSGA-II | 4179 | 4342 | SPEA2 | 3472 | 3801 | ||||
171.97 | 191.36 | 150.37 | 162.37 | ||||||
0.9775 | 0.9463 | 0.9203 | 0.9067 | ||||||
MOPSO | 5413 | 5991 | MOEA/D | 2834 | 3069 | ||||
202.50 | 245.34 | 159.91 | 176.89 | ||||||
0.9478 | 0.9133 | 0.9654 | 0.9436 |
Route | Customer Visit Sequence | Route Length (km) |
---|---|---|
Route 1 | 0-16-15-0 | 20.8810 |
Route 2 | 0-7-4-6-28-0 | 46.8854 |
Route 3 | 0-20-26-12-11-24-21-0 | 74.8665 |
Route 4 | 0-25-19-3-0 | 36.6570 |
Route 5 | 0-27-22-8-0 | 32.7749 |
Route 6 | 0-17-10-0 | 26.2375 |
Route 7 | 0-13-9-27-0 | 50.8931 |
Route 8 | 0-18-2-0 | 19.8214 |
Route 9 | 0-1-5-23-14-0 | 60.3349 |
Route | Customer Visit Sequence | Route Length (km) |
---|---|---|
Route 1 | 0-18-2-0 | 19.8214 |
Route 2 | 0-7-1-5-29-0 | 51.9434 |
Route 3 | 0-20-12-26-24-21-9-0 | 67.6993 |
Route 4 | 0-16-19-0 | 21.0472 |
Route 5 | 0-15-17-0 | 21.2370 |
Route 6 | 0-22-4-8-28-0 | 39.8151 |
Route 7 | 0-11-25-10-13-0 | 47.9913 |
Route 8 | 0-3-0 | 11.4974 |
Route 9 | 0-27-6-23-14-0 | 56.0404 |
Route | Customer Visit Sequence | Route Length (km) |
---|---|---|
Route 1 | 0-20-25-23-11-0 | 65.1575 |
Route 2 | 0-3-0 | 11.4974 |
Route 3 | 0-7-27-6-28-0 | 45.5127 |
Route 4 | 0-19-5-14-1-0 | 52.8591 |
Route 5 | 0-17-29-0 | 31.2595 |
Route 6 | 0-13-10-21-9-0 | 58.6432 |
Route 7 | 0-18-2-0 | 19.8214 |
Route 8 | 0-15-4-8-0 | 40.1627 |
Route 9 | 0-16-22-0 | 24.7295 |
Route 10 | 0-26-12-24-0 | 59.9664 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Gao, C.; Wang, J.; Tang, H.; Ma, T.; Yuan, F. Research on Multi-Objective Green Vehicle Routing Problem with Time Windows Based on the Improved Non-Dominated Sorting Genetic Algorithm III. Symmetry 2025, 17, 734. https://doi.org/10.3390/sym17050734
Li X, Gao C, Wang J, Tang H, Ma T, Yuan F. Research on Multi-Objective Green Vehicle Routing Problem with Time Windows Based on the Improved Non-Dominated Sorting Genetic Algorithm III. Symmetry. 2025; 17(5):734. https://doi.org/10.3390/sym17050734
Chicago/Turabian StyleLi, Xixing, Chao Gao, Jipeng Wang, Hongtao Tang, Tian Ma, and Fenglian Yuan. 2025. "Research on Multi-Objective Green Vehicle Routing Problem with Time Windows Based on the Improved Non-Dominated Sorting Genetic Algorithm III" Symmetry 17, no. 5: 734. https://doi.org/10.3390/sym17050734
APA StyleLi, X., Gao, C., Wang, J., Tang, H., Ma, T., & Yuan, F. (2025). Research on Multi-Objective Green Vehicle Routing Problem with Time Windows Based on the Improved Non-Dominated Sorting Genetic Algorithm III. Symmetry, 17(5), 734. https://doi.org/10.3390/sym17050734