Research on Multi-Objective Green Vehicle Routing Problem with Time Windows Based on the Improved Non-Dominated Sorting Genetic Algorithm III
Abstract
:1. Introduction
2. Mathmatical Model of MOGVRPTW
2.1. Problem Description
2.2. Objective Function
2.2.1. Vehicle Delivery Cost
2.2.2. Vehicle Carbon Emission
2.2.3. Average Customer Satisfaction
2.3. Optimization Model
3. INSGA-III for MOGVRPTW
- Population Initialization: The population is initialized using integer encoding, with individuals randomly generated, and the fitness value of each individual is calculated.
- Selection Process: The hybrid NSGA-II uses a combination of crowding distance-based selection and tournament selection to choose individuals from the current population, ensuring that high-quality genes are involved in the subsequent crossover and mutation processes.
- Crossover and Mutation: Leveraging the global search capability of NSGA-III, the population undergoes crossover and mutation, and reference points are generated.
- Local Search: The 2-opt local search strategy is applied to the selected high-quality individuals from the previous step to avoid losing superior individuals.
- Termination Check: Determine whether the algorithm has terminated by checking if the specified number of iterations has been reached. If so, the algorithm terminates; otherwise, it continues iterating.
3.1. Encoding and Decoding
3.2. Selection Operator
- Calculate the Pareto dominance ranks and normalized crowding distances simultaneously for all population members to establish dual fitness criteria, the non-dominated rank, and crowding distance for each individual in the population.
- For each selection event, randomly select a group of individuals (tournament size), and select the individual with the lowest non-dominated rank from this group.
- If there are multiple individuals within the tournament group that have the same lowest non-dominated rank, select the one with the largest crowding distance to enhance diversity in the solution set.
3.3. Crossover Operator
3.4. Mutation Operator
3.5. Local Search Strategy
Algorithm 1: 2-Opt. Swap Function |
Input: ; Output: Best ; function 2-Opt.Swap(, i, j) do ←; ← ++; Calculate ; Return ; end for to do for to do ; if then ; end end end Return the best (). |
4. Computational Experiments
4.1. Experimental Parameter Settings
4.2. Algorithm Performance Metrics
4.3. Algorithm Parameter Settings
4.4. Algorithm Comparison Experiment
5. Real-World Case Study
5.1. Experimental Data Processing
5.2. Algorithm Comparison Experiment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asghari, M.; Al-e-hashem, S.M.J.M. Green vehicle routing problem: A state-of-the-art review. Int. J. Prod. Econ. 2021, 9, 203–209. [Google Scholar] [CrossRef]
- Moghdani, R.; Salimifard, K.; Demir, E. The green vehicle routing problem: A systematic literature review. J. Clean. Prod. 2021, 279, 123691. [Google Scholar] [CrossRef]
- Soleimani, H.; Chaharlang, Y.; Ghaderi, H. Collection and distribution of returned-remanufactured products in a vehicle routing problem with pickup and delivery considering sustainable and green criteria. J. Clean. Prod. 2018, 172, 960–970. [Google Scholar] [CrossRef]
- Macrina, G.; Laporte, G.; Guerriero, F.; Pugliese, L.D.P. An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows. Eur. J. Oper. Res. 2019, 276, 971–982. [Google Scholar] [CrossRef]
- Sadati, M.E.H.; Çatay, B. A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem. Transport. Res. E-Log. 2021, 149, 102293. [Google Scholar] [CrossRef]
- Toro, E.M.; Franco, J.F.; Echeverri, M.G.; Guimarães, F.G. A multi-objective model for the green capacitated location-routing problem considering environmental impact. Comput. Ind. Eng. 2017, 110, 114–125. [Google Scholar] [CrossRef]
- Poonthalir, G.; Nadarajan, R. A fuel efficient green vehicle routing problem with varying speed constraint (F-GVRP). Expert Syst. Appl. 2018, 100, 131–444. [Google Scholar] [CrossRef]
- Long, J.; Sun, Z.; Pardalos, P.M.; Hong, Y.; Zhang, S.; Li, C. A hybrid multi-objective genetic local search algorithm for the prize-collecting vehicle routing problem. Inf. Sci. 2019, 478, 40–61. [Google Scholar] [CrossRef]
- Anderluh, A.; Nolz, P.C.; Hemmelmayr, V.C.; Crainic, T.G. Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in urban logistics. Eur. J. Oper. Res. 2021, 289, 940–958. [Google Scholar] [CrossRef]
- Ziaei, Z.; Jabbarzadeh, A. A multi-objective robust optimization approach for green location-routing planning of multi-modal transportation systems under uncertainty. J. Clean. Prod. 2021, 291, 215293. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, Y.; Cao, Z.; Gao, K.; Xiao, J.; Song, W.; Zhang, F. MIMOA: A membrane-inspired multi-objective algorithm for green vehicle routing problem with stochastic demands. Swarm Evol. Comput. 2021, 60, 100767. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Xu, W.; Wang, W. A novel multi-objective optimization model for the vehicle routing problem with drone delivery and dynamic flight endurance. Comput. Ind. Eng. 2022, 173, 108679. [Google Scholar] [CrossRef]
- Yin, N. Multiobjective optimization for vehicle routing optimization problem in low-carbon intelligent transportation. IEEE Trans. Intell. Transp. Syst. 2022, 24, 13161–13170. [Google Scholar] [CrossRef]
- Rezaei, N.; Ebrahimnejad, S.; Moosavi, A.; Nikfarjam, A. A green vehicle routing problem with time windows considering the heterogeneous fleet of vehicles: Two metaheuristic algorithms. Eur. J. Ind. Eng. 2019, 13, 507–535. [Google Scholar]
- Xu, Z.; Elomri, A.; Pokharel, S.; Mutlu, F. A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows. Comput. Ind. Eng. 2019, 137, 106011. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, S.; Wang, J.; Huang, M. A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows. Transport. Res. B-Meth. 2019, 122, 511–527. [Google Scholar] [CrossRef]
- Ren, X.; Huang, H.; Feng, S.; Liang, G. An improved variable neighborhood search for bi-objective mixed-energy fleet vehicle routing problem. J. Clean. Prod. 2020, 275, 124155. [Google Scholar] [CrossRef]
- Liu, Y.; Roberto, B.; Zhou, J.; Yu, Y.; Zhang, Y.; Sun, W. Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows. Eur. J. Oper. Res. 2023, 310, 133–155. [Google Scholar] [CrossRef]
- Ghannadpour, S.F.; Zarrabi, A. Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing. Swarm Evol. Comput. 2019, 44, 728–6747. [Google Scholar] [CrossRef]
- Song, M.X.; Li, J.Q.; Han, Y.Q.; Han, Y.Y.; Liu, L.L.; Sun, Q. Metaheuristics for solving the vehicle routing problem with the time windows and energy consumption in cold chain logistics. Appl. Soft Comput. 2020, 95, 106561. [Google Scholar] [CrossRef]
- Xu, X.; Wang, C.; Zhou, P. GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective. Int. J. Prod. Econ. 2021, 235, 108078. [Google Scholar] [CrossRef]
- Zarouk, Y.; Mahdavi, I.; Rezaeian, J.; Santos-Arteaga, F.J. A novel multi-objective green vehicle routing and scheduling model with stochastic demand, supply, and variable travel times. Comput. Oper. Res. 2022, 141, 105698. [Google Scholar] [CrossRef]
- Elgharably, N.; Easa, S.; Nassef, A.; El Damatty, A. Stochastic multi-objective vehicle routing model in green environment with customer satisfaction. IEEE Trans. Intell. Transp. Syst. 2022, 24, 1337–1355. [Google Scholar] [CrossRef]
- Kuo, R.J.; Luthfiansyah, M.F.; Masruroh, N.A. Application of improved multi-objective particle swarm optimization algorithm to solve disruption for the two-stage vehicle routing problem with time windows. Expert Syst. Appl. 2023, 225, 120009. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, Q.; Kaku, I.; Xu, Y. Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput. Oper. Res. 2012, 39, 1419–1431. [Google Scholar] [CrossRef]
- Hickman, A.; Hassel, D.; Joumard, R.; Samaras, Z.; Sorenson, S. Methodology for Calculating Transport Emissions and Energy Consumption; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 1999; pp. 1–362. [Google Scholar]
- Yang, F.; Tao, F. A bi-objective optimization VRP model for cold chain logistics: Enhancing cost efficiency and customer satisfaction. IEEE Access 2023, 11, 127043–127056. [Google Scholar] [CrossRef]
- Yang, B.; Hu, Z.H.; Wei, C.; Li, S.Q.; Zhao, L.; Jia, S. Routing with time-windows for multiple environmental vehicle types. Comput. Ind. Eng. 2015, 89, 150–161. [Google Scholar] [CrossRef]
- Solomon, M.M. VRPTW Benchmark Problems. Available online: https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/ (accessed on 27 April 2025).
- Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms–a comparative case study. In Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, 27–30 September 1998; pp. 292–310. [Google Scholar]
- Mohammadi, M.; Jolai, F.; Tavakkoli-Moghaddam, R. Solving a new stochastic multi-mode p-hub covering location problem considering risk by a novel multi-objective algorithm. Appl. Math. Model. 2013, 37, 10053–10073. [Google Scholar] [CrossRef]
- Coello Coello, C.A.; Reyes Sierra, M. A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In Proceedings of the Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, 26–30 April 2004; pp. 688–697. [Google Scholar]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef]
- Amini, A.; Tavakkoli-Moghaddam, R. A bi-objective truck scheduling problem in a cross-docking center with probability of breakdown for trucks. Comput. Ind. Eng. 2016, 96, 180–191. [Google Scholar] [CrossRef]
Symbol | Definition | Symbol | Definition |
---|---|---|---|
Set of vehicles, | ; | Arrival time of the k-th vehicle at customer i; | |
Set of customers, . In particular, the depot is considered as customer 0, denoted as {0}; | Driving time of the k-th vehicle on arc ; | ||
Unit fuel cost | ; | Service time at customer i; | |
Unit vehicle activation cost; | Specified service time window at customer i; | ||
Unit distance transportation cost; | Expected service time window at customer i; | ||
Distance travel between customer i and j; | Penalty cost per unit time for waiting before the customer’s expected service time ; | ||
R | Vehicle capacity; | Penalty cost per unit time for waiting after the customer’s expected service time ; | |
Demand of customer i; | Customer satisfaction function; | ||
Actual load of the k-th vehicle on arc ; | If the k-th vehicle is traveling from customer i to j, the value is set to 1; otherwise, it is set to 0. | ||
Average speed of the vehicle on arc | If the k-th vehicle is in serve at customer i, the value is set to 1; otherwise, it is set to 0. |
Parameter | Value | Parameter | Value |
---|---|---|---|
10 CNY/L | 20 CNY/h | ||
100 CNY/vehicle | 60 CNY/h | ||
2 CNY/km | 0.122 L/km | ||
R | 400 kg | 0.388 L/km | |
40 km/h |
Parameters | Parameter Levels | ||
---|---|---|---|
1 | 2 | 3 | |
40 | 60 | 80 | |
0.6 | 0.7 | 0.8 | |
0.1 | 0.2 | 0.3 |
Experiments | Parameters | |||
---|---|---|---|---|
1 | 40 | 0.6 | 0.1 | 0.8011 |
2 | 40 | 0.7 | 0.3 | 0.7820 |
3 | 40 | 0.8 | 0.2 | 0.6713 |
4 | 60 | 0.6 | 0.4 | 0.7245 |
5 | 60 | 0.7 | 0.2 | 0.8103 |
6 | 60 | 0.8 | 0.3 | 0.7403 |
7 | 80 | 0.6 | 0.0 | 0.7962 |
8 | 80 | 0.7 | 0.1 | 0.8911 |
9 | 80 | 0.8 | 0.3 | 0.8033 |
Algorithm | Metric | 25 Customer Points | 50 Customer Points | 100 Customer Points | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C102 | R201 | RC202 | C102 | R201 | RC202 | C102 | R201 | RC201 | ||
INSGA-III | 0.8612 | 0.8487 | 0.8176 | 0.8581 | 0.8299 | 0.8113 | 0.8285 | 0.7526 | 0.8035 | |
0.0646 | 0.0534 | 0.0322 | 0.0609 | 0.0326 | 0.0374 | 0.0209 | 0.0279 | 0.0319 | ||
0.0754 | 0.0463 | 0.0518 | 0.1228 | 0.1238 | 0.1127 | 0.1733 | 0.2062 | 0.2569 | ||
1.2332 | 1.5519 | 1.5007 | 1.5277 | 1.5343 | 1.4416 | 1.2087 | 1.3454 | 1.1194 | ||
0.7344 | 0.5198 | 0.6604 | 0.6581 | 0.6300 | 0.5113 | 0.6285 | 0.7526 | 0.6035 | ||
0.5248 | 0.5987 | 0.5889 | 0.6609 | 0.6326 | 0.6374 | 0.6209 | 0.7879 | 0.6519 | ||
0.5552 | 0.6669 | 0.6001 | 0.5228 | 0.6238 | 0.5900 | 0.6733 | 0.6662 | 0.5969 | ||
0.7115 | 0.6224 | 0.7009 | 0.8581 | 0.8229 | 0.8113 | 0.8285 | 0.8269 | 0.8069 | ||
0.7905 | 0.8021 | 0.8432 | 0.9800 | 0.7736 | 0.9493 | 0.9227 | 0.8001 | 0.8889 | ||
NSGA-III | 0.8307 | 0.7400 | 0.7154 | 0.7741 | 0.7020 | 0.7948 | 0.8132 | 0.6034 | 0.6853 | |
0.0799 | 0.0718 | 0.0473 | 0.0634 | 0.0441 | 0.0391 | 0.0428 | 0.0482 | 0.0357 | ||
0.0998 | 0.1975 | 0.1537 | 0.1795 | 0.2007 | 0.1275 | 0.1861 | 0.2419 | 0.2649 | ||
1.0079 | 1.3763 | 1.4035 | 1.2873 | 1.1271 | 1.0954 | 1.2207 | 1.0768 | 0.7915 | ||
0.4556 | 0.3224 | 0.4445 | 0.2977 | 0.3218 | 0.3511 | 0.3369 | 0.2237 | 0.5214 | ||
NSGA-II | 0.8449 | 0.7197 | 0.7309 | 0.7373 | 0.7596 | 0.7553 | 0.7789 | 0.5302 | 0.6921 | |
0.1724 | 0.0631 | 0.0549 | 0.0980 | 0.0386 | 0.0502 | 0.0448 | 0.0366 | 0.0368 | ||
0.0858 | 0.1544 | 0.1718 | 0.1633 | 0.1514 | 0.1703 | 0.1801 | 0.2771 | 0.2815 | ||
1.5378 | 1.1901 | 1.4302 | 0.9474 | 1.4216 | 1.4320 | 1.2862 | 0.9700 | 0.8674 | ||
0.4008 | 0.3664 | 0.3997 | 0.3337 | 0.3689 | 0.3766 | 0.3264 | 0.3998 | 0.2916 | ||
SPEA2 | 0.8282 | 0.8059 | 0.6707 | 0.7620 | 0.7707 | 0.7891 | 0.6234 | 0.7095 | 0.6639 | |
0.1100 | 0.0913 | 0.1082 | 0.1188 | 0.0903 | 0.0492 | 0.0402 | 0.1032 | 0.0849 | ||
0.0856 | 0.0867 | 0.1908 | 0.2200 | 0.1409 | 0.1373 | 0.3271 | 0.2889 | 0.2642 | ||
0.7682 | 1.3905 | 1.0673 | 1.5508 | 1.1836 | 1.3122 | 0.7633 | 1.1061 | 0.9816 | ||
0.4112 | 0.2334 | 0.3445 | 0.3658 | 0.3564 | 0.3236 | 0.3967 | 0.3226 | 0.3015 | ||
MOPSO | 0.6228 | 0.6530 | 0.5543 | 0.5067 | 0.5737 | 0.4935 | 0.4915 | 0.3750 | 0.3873 | |
0.0706 | 0.0623 | 0.0614 | 0.1186 | 0.0682 | 0.0673 | 0.0529 | 0.0972 | 0.0811 | ||
0.2507 | 0.2296 | 0.3067 | 0.5744 | 0.3977 | 0.5101 | 0.5715 | 0.8011 | 0.6921 | ||
1.1987 | 1.1027 | 0.8892 | 0.7300 | 1.1156 | 0.9496 | 0.6604 | 1.1061 | 0.9571 | ||
0.1446 | 0.2664 | 0.3001 | 0.2097 | 0.2698 | 0.2359 | 0.2016 | 0.1854 | 0.1993 | ||
MOEA/D | 0.5805 | 0.7579 | 0.7484 | 0.5476 | 0.7861 | 0.7570 | 0.5267 | 0.5978 | 0.5622 | |
0.1572 | 0.0973 | 0.0393 | 0.0782 | 0.1020 | 0.0799 | 0.0650 | 0.1143 | 0.0880 | ||
0.2969 | 0.1516 | 0.2106 | 0.1572 | 0.1342 | 0.1499 | 0.5352 | 0.3007 | 0.3690 | ||
1.2156 | 0.8455 | 1.1315 | 0.7462 | 1.0015 | 0.9947 | 0.6734 | 1.1236 | 0.9678 | ||
0.6235 | 0.4677 | 0.4610 | 0.3632 | 0.5563 | 0.5246 | 0.3231 | 0.4977 | 0.5220 |
Algorithm | Objective | 25 Customer Points | 50 Customer Points | 100 Customer Points | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C102 | R201 | RC202 | C102 | R201 | RC202 | C102 | R201 | RC201 | ||
INSGA-III | 2205 | 8072 | 6768 | 12,025 | 15,491 | 15,882 | 34,458 | 33,544 | 47,715 | |
257.46 | 660.59 | 457.98 | 175.81 | 486.88 | 503.62 | 552.44 | 991.36 | 1070.13 | ||
0.9972 | 0.8436 | 0.9465 | 0.9265 | 0.8651 | 0.9095 | 0.9124 | 0.8651 | 0.8549 | ||
NSGA-III | 3812 | 14,681 | 10,597 | 30,150 | 23,108 | 27,938 | 182,880 | 49,890 | 61,729 | |
318.41 | 757.17 | 620.31 | 223.57 | 553.93 | 513.61 | 652.32 | 1097.36 | 1223.73 | ||
0.9335 | 0.8036 | 0.9154 | 0.7984 | 0.7965 | 0.7989 | 0.6608 | 0.7300 | 0.7470 | ||
NSGA-II | 5042 | 14,965 | 9422 | 35,704 | 21,448 | 27,903 | 153,007 | 47,380 | 60,521 | |
280.53 | 738.42 | 594.12 | 212.82 | 532.56 | 544.80 | 661.33 | 1115.94 | 1150.09 | ||
0.9022 | 0.7819 | 0.8865 | 0.8241 | 0.8027 | 0.8348 | 0.6928 | 0.7735 | 0.7891 | ||
SPEA2 | 9621 | 9187 | 14,089 | 26,840 | 18,002 | 21,207 | 94,899 | 41,947 | 59,150 | |
287.52 | 674.51 | 545.42 | 233.65 | 505.13 | 526.54 | 1101.46 | 1008.47 | 1293.55 | ||
0.8647 | 0.8346 | 0.7815 | 0.8574 | 0.7998 | 0.8654 | 0.7009 | 0.8199 | 0.7882 | ||
MOPSO | 7646 | 17,346 | 14,094 | 57,373 | 25,734 | 34,568 | 159,934 | 68,789 | 84,336 | |
383.56 | 811.06 | 926.69 | 405.46 | 631.18 | 840.06 | 1471.97 | 1200.49 | 1633.65 | ||
0.9229 | 0.6965 | 0.7603 | 0.7249 | 0.7007 | 0.6934 | 0.6094 | 0.6340 | 0.6574 | ||
MOEA/D | 3729 | 9927 | 7593 | 14,047 | 15,866 | 16,261 | 69,715 | 43,167 | 52,717 | |
327.00 | 739.95 | 502.98 | 385.00 | 507.88 | 691.06 | 1278.43 | 1102.83 | 1444.01 | ||
0.9511 | 0.7613 | 0.8639 | 0.8511 | 0.8575 | 0.8846 | 0.7701 | 0.8192 | 0.7929 |
Algorithm | Objective | 25 Customer Points | 50 Customer Points | 100 Customer Points | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C102 | R201 | RC202 | C102 | R201 | RC202 | C102 | R201 | RC201 | ||
INSGA-III | 2456 | 8451 | 7265 | 13,495 | 16,389 | 16,004 | 54,962 | 41,019 | 50,715 | |
305.96 | 683.46 | 490.63 | 204.14 | 512.44 | 529.65 | 580.95 | 1084.68 | 1296.83 | ||
0.9152 | 0.8196 | 0.9066 | 0.8998 | 0.8394 | 0.8849 | 0.9064 | 0.8316 | 0.8269 | ||
NSGA-III | 4051 | 15,396 | 11,884 | 32,004 | 25,170 | 28,654 | 194,561 | 51,498 | 62,875 | |
350.45 | 780.53 | 660.05 | 250.68 | 580.66 | 546.33 | 686.94 | 1235.64 | 1345.85 | ||
0.8842 | 0.7844 | 0.8863 | 0.7694 | 0.7698 | 0.7767 | 0.6433 | 0.7198 | 0.7297 | ||
NSGA-II | 5236 | 16,143 | 10,123 | 36,874 | 22,587 | 29,006 | 158,598 | 49,423 | 61,362 | |
315.47 | 750.88 | 613.55 | 229.78 | 559.33 | 583.77 | 702.69 | 1256.82 | 1365.69 | ||
0.8633 | 0.7615 | 0.8440 | 0.7859 | 0.7852 | 0.8160 | 0.6789 | 0.7598 | 0.7766 | ||
SPEA2 | 9938 | 10,112 | 16,051 | 28,758 | 19,964 | 24,159 | 102,357 | 43,156 | 61,005 | |
326.38 | 710.60 | 578.33 | 264.45 | 526.48 | 550.65 | 1192.54 | 1156.56 | 1387.53 | ||
0.8344 | 0.8019 | 0.7516 | 0.7583 | 0.7698 | 0.8423 | 0.6894 | 0.8056 | 0.7648 | ||
MOPSO | 9469 | 18,574 | 15,163 | 58,346 | 27,459 | 34,905 | 167,854 | 70,547 | 88,489 | |
413.89 | 830.59 | 1005.83 | 424.38 | 656.85 | 887.44 | 1569.33 | 1301.58 | 1735.69 | ||
0.8455 | 0.6547 | 0.7342 | 0.7015 | 0.6867 | 0.6698 | 0.5865 | 0.6080 | 0.6136 | ||
MOEA/D | 4089 | 12,784 | 8042 | 15,244 | 17,769 | 17,444 | 73,004 | 46,987 | 55,021 | |
384.05 | 799.98 | 550.16 | 404.50 | 580.64 | 720.04 | 1456.37 | 1301.45 | 1566.88 | ||
0.9002 | 0.7213 | 0.7926 | 0.7969 | 0.8013 | 0.7998 | 0.7043 | 0.7344 | 0.7642 |
Customer Point | X Coordinate | Y Coordinate | Customer Demand (ton) | Service Time (min) | Time Window (h) |
---|---|---|---|---|---|
0 | 30.956 | 8.842 | 0 | 0 | |
1 | 18.692 | 1.528 | 1.08 | 22 | |
2 | 22.197 | 4.345 | 1.68 | 25 | |
3 | 26.275 | 5.505 | 1.5 | 23 | |
4 | 12.078 | 5.638 | 0.7 | 14 | |
5 | 9.72 | 8.348 | 0.58 | 12 | |
6 | 8.279 | 8.691 | 0.31 | 6 | |
7 | 24.772 | 8.793 | 0.8 | 16 | |
8 | 15.096 | 8.924 | 0.83 | 12 | |
9 | 8.991 | 10.484 | 0.5 | 10 | |
10 | 18.086 | 11.073 | 0.98 | 20 | |
11 | 9.182 | 14.126 | 0.5 | 10 | |
12 | 17.378 | 23.541 | 0.87 | 17 | |
13 | 20.219 | 14.498 | 1.45 | 22 | |
14 | 11.988 | 12.037 | 0.65 | 13 | |
15 | 20.771 | 9.748 | 1.6 | 24 | |
16 | 23.793 | 8.079 | 2.21 | 33 | |
17 | 22.388 | 11.148 | 1.75 | 26 | |
18 | 24.273 | 6.217 | 2.3 | 35 | |
19 | 20.904 | 6.195 | 1.63 | 24 | |
20 | 17.467 | 18.673 | 0.9 | 14 | |
21 | 8.738 | 18.799 | 0.43 | 9 | |
22 | 18.621 | 8.057 | 1.05 | 21 | |
23 | 3.311 | 9.515 | 1.63 | 24 | |
24 | 7.661 | 23.979 | 0.25 | 5 | |
25 | 14.63 | 12.356 | 0.76 | 15 | |
26 | 15.677 | 22.054 | 0.83 | 12 | |
27 | 19.378 | 9.56 | 1.1 | 22 | |
28 | 19.745 | 7.877 | 1.2 | 24 | |
29 | 20.008 | 1.984 | 1.25 | 19 |
Algorithm | |||||||||
---|---|---|---|---|---|---|---|---|---|
INSGA-III | 0.8053 | 0.1146 | 0.6540 | 1.3320 | 0.8145 | 0.6368 | 0.5263 | 0.7745 | 0.8045 |
NSGA-III | 0.7156 | 0.2551 | 1.8678 | 1.0609 | 0.1256 | N/A | N/A | N/A | N/A |
NSGA-II | 0.6042 | 0.5369 | 0.6755 | 0.9780 | N/A | 0.1511 | N/A | N/A | N/A |
SPEA2 | 0.7745 | 0.2736 | 0.7552 | 0.6364 | N/A | N/A | 0.4091 | N/A | N/A |
MOPSO | 0.4415 | 0.3244 | 3.0230 | 1.0145 | N/A | N/A | N/A | 0.1646 | N/A |
MOEA/D | 0.4595 | 0.3091 | 0.6945 | 0.9987 | N/A | N/A | N/A | N/A | 0.5000 |
Algorithm | Objective | Results | Objective | Results | Algorithm | Objective | Results | Objective | Results |
---|---|---|---|---|---|---|---|---|---|
INSGA-III | 2262 | 2448 | NSGA-III | 3852 | 4012 | ||||
140.65 | 160.39 | 169.85 | 180.64 | ||||||
1.0000 | 0.9436 | 0.9278 | 0.9006 | ||||||
NSGA-II | 4179 | 4342 | SPEA2 | 3472 | 3801 | ||||
171.97 | 191.36 | 150.37 | 162.37 | ||||||
0.9775 | 0.9463 | 0.9203 | 0.9067 | ||||||
MOPSO | 5413 | 5991 | MOEA/D | 2834 | 3069 | ||||
202.50 | 245.34 | 159.91 | 176.89 | ||||||
0.9478 | 0.9133 | 0.9654 | 0.9436 |
Route | Customer Visit Sequence | Route Length (km) |
---|---|---|
Route 1 | 0-16-15-0 | 20.8810 |
Route 2 | 0-7-4-6-28-0 | 46.8854 |
Route 3 | 0-20-26-12-11-24-21-0 | 74.8665 |
Route 4 | 0-25-19-3-0 | 36.6570 |
Route 5 | 0-27-22-8-0 | 32.7749 |
Route 6 | 0-17-10-0 | 26.2375 |
Route 7 | 0-13-9-27-0 | 50.8931 |
Route 8 | 0-18-2-0 | 19.8214 |
Route 9 | 0-1-5-23-14-0 | 60.3349 |
Route | Customer Visit Sequence | Route Length (km) |
---|---|---|
Route 1 | 0-18-2-0 | 19.8214 |
Route 2 | 0-7-1-5-29-0 | 51.9434 |
Route 3 | 0-20-12-26-24-21-9-0 | 67.6993 |
Route 4 | 0-16-19-0 | 21.0472 |
Route 5 | 0-15-17-0 | 21.2370 |
Route 6 | 0-22-4-8-28-0 | 39.8151 |
Route 7 | 0-11-25-10-13-0 | 47.9913 |
Route 8 | 0-3-0 | 11.4974 |
Route 9 | 0-27-6-23-14-0 | 56.0404 |
Route | Customer Visit Sequence | Route Length (km) |
---|---|---|
Route 1 | 0-20-25-23-11-0 | 65.1575 |
Route 2 | 0-3-0 | 11.4974 |
Route 3 | 0-7-27-6-28-0 | 45.5127 |
Route 4 | 0-19-5-14-1-0 | 52.8591 |
Route 5 | 0-17-29-0 | 31.2595 |
Route 6 | 0-13-10-21-9-0 | 58.6432 |
Route 7 | 0-18-2-0 | 19.8214 |
Route 8 | 0-15-4-8-0 | 40.1627 |
Route 9 | 0-16-22-0 | 24.7295 |
Route 10 | 0-26-12-24-0 | 59.9664 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Gao, C.; Wang, J.; Tang, H.; Ma, T.; Yuan, F. Research on Multi-Objective Green Vehicle Routing Problem with Time Windows Based on the Improved Non-Dominated Sorting Genetic Algorithm III. Symmetry 2025, 17, 734. https://doi.org/10.3390/sym17050734
Li X, Gao C, Wang J, Tang H, Ma T, Yuan F. Research on Multi-Objective Green Vehicle Routing Problem with Time Windows Based on the Improved Non-Dominated Sorting Genetic Algorithm III. Symmetry. 2025; 17(5):734. https://doi.org/10.3390/sym17050734
Chicago/Turabian StyleLi, Xixing, Chao Gao, Jipeng Wang, Hongtao Tang, Tian Ma, and Fenglian Yuan. 2025. "Research on Multi-Objective Green Vehicle Routing Problem with Time Windows Based on the Improved Non-Dominated Sorting Genetic Algorithm III" Symmetry 17, no. 5: 734. https://doi.org/10.3390/sym17050734
APA StyleLi, X., Gao, C., Wang, J., Tang, H., Ma, T., & Yuan, F. (2025). Research on Multi-Objective Green Vehicle Routing Problem with Time Windows Based on the Improved Non-Dominated Sorting Genetic Algorithm III. Symmetry, 17(5), 734. https://doi.org/10.3390/sym17050734