New Subclass of Meromorphic Functions Defined via Mittag–Leffler Function on Hilbert Space
Abstract
:1. Introduction
- Additivity: ;
- Homogeneity: ;
- Conjugate Symmetry: ;
- Positive Definite: if .
- ;
- .
2. Cofficient Bounds
3. Closure Properties of Arithmetic Mean and Weighted Mean
4. Growth and Distortion Bounds
5. Convex Set
6. Extreme Points
7. Radii of Starlikeness and Convexity for the Class
8. Hadamard Product
9. Integral Operators
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akgul, A.; Bulut, S. On a certain subclass of meromorphic functions defined by Hilbert space operator. Acta Univ. Apulensis 2016, 45, 1–9. [Google Scholar] [CrossRef]
- Noorizadegan, A.; Chen, C.S.; Young, D.L.; Chen, C.S. Effective condition number for the selection of the RBF shape parameter with the fictitious point method. Appl. Numer. Math. 2022, 178, 280–295. [Google Scholar] [CrossRef]
- Afzal, W.; Cotîrlă, L.-I. New Numerical Quadrature Functional Inequalities on Hilbert Spaces in the Framework of Different Forms of Generalized Convex Mappings. Symmetry 2025, 17, 146. [Google Scholar] [CrossRef]
- Ahmed, S.; Alsoboh, A.; Darus, M. A Specific Class of Harmonic Meromorphic Functions Associated with the Mittag-Leffler Transformation. Eur. J. Pure Appl. Math. 2024, 17, 1894–1907. [Google Scholar] [CrossRef]
- Akgül, A. A new subclass of meromorphic functions with positive and fixed second coefficients defined by the Rafid-operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017, 66, 1–13. [Google Scholar]
- Meshes, J.A. A class of meromorphic functions of slow growth in the unit disk not containing any of their integrals. J. Math. Anal. Appl. 2012, 359, 855–863. [Google Scholar] [CrossRef]
- Biswas, C.; Das, B.C. Relative (α, β, γ)-Order of Meromorphic Function with Respect to Entire Function. Electron. J. Math. Anal. Appl. 2025, 13, 1–10. [Google Scholar] [CrossRef]
- Saleh, Z.M.; Mostafa, A.O. Convolution Results for Subclasses of Multivalent Meromorphic Functions of Complex Order Involving an Integral Operator. Electron. J. Math. Anal. Appl. 2025, 13, 1–7. [Google Scholar] [CrossRef]
- El-Ashwah, R.M. Inclusion properties regarding the meromorphic structure of Srivastava-Attiya operator. Southeast Asian Bull. Math. 2014, 38, 501–512. [Google Scholar]
- Mesbout, F.; Zerzaihi, T. On the growth of meromorphic solutions of some higher-order linear differential equations. Turk. J. Math. 2018, 42, 1049–1059. [Google Scholar]
- Mittag-Leffler, G.M. Sur la nouvelle fonction E(x). Comptes Rendus L’académie Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Kazhdan, D.A. Connection of the dual space of a group with the structure of its close subgroups. Funktsional’Nyi Anal. Ego Prilozheniya 1967, 1, 71–74. [Google Scholar] [CrossRef]
- Wiman, A. Über den Fundamentalsatz in der Theorie der Funktionen E(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. Über die Nullstellen der Funktionen E(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F. Some properties of a linear operator involving generalized Mittag-Leffler function. Stud. Univ. Babes-Bolyai Math. 2020, 65, 67–75. [Google Scholar] [CrossRef]
- Sacks, P. Techniques of Functional Analysis for Differential and Integral Equations; Academic Press: New York, NY, USA, 2017. [Google Scholar]
- Maragos, P. Representations for morphological image operators and analogies with linear operators. Adv. Imaging Electron Phys. 2013, 177, 45–187. [Google Scholar]
- Sleeman, B.D. Multiparameter spectral theory in Hilbert space. J. Math. Anal. Appl. 1978, 65, 511–530. [Google Scholar] [CrossRef]
- Akgül, A. A Subclass of Meromorphic Functions Defined by a Certain Integral Operator on Hilbert Space. Creat. Math. Inform. 2017, 26, 115–124. [Google Scholar] [CrossRef]
- Venkateswarlu, B.; Reddy, P.T.; Shilpa, R.M.; Swapna, G. A Note on Meromorphic Functions Associated with Bessel Function Defined by Hilbert Space Operator. Concr. Oper. 2021, 8, 66–76. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A Singular Integral Equation with a Generalized Mittag-Leffler Function in the Kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Dorrego, G.A.; Cerutti, R.A. The k-Mittag-Leffler Function. Int. J. Contemp. Math. Sci. 2012, 7, 705–716. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ityan, M.; Cotîrlă, L.-I.; Al-Hawary, T.; Hammad, S.; Breaz, D.; Buti, R. New Subclass of Meromorphic Functions Defined via Mittag–Leffler Function on Hilbert Space. Symmetry 2025, 17, 728. https://doi.org/10.3390/sym17050728
El-Ityan M, Cotîrlă L-I, Al-Hawary T, Hammad S, Breaz D, Buti R. New Subclass of Meromorphic Functions Defined via Mittag–Leffler Function on Hilbert Space. Symmetry. 2025; 17(5):728. https://doi.org/10.3390/sym17050728
Chicago/Turabian StyleEl-Ityan, Mohammad, Luminita-Ioana Cotîrlă, Tariq Al-Hawary, Suha Hammad, Daniel Breaz, and Rafid Buti. 2025. "New Subclass of Meromorphic Functions Defined via Mittag–Leffler Function on Hilbert Space" Symmetry 17, no. 5: 728. https://doi.org/10.3390/sym17050728
APA StyleEl-Ityan, M., Cotîrlă, L.-I., Al-Hawary, T., Hammad, S., Breaz, D., & Buti, R. (2025). New Subclass of Meromorphic Functions Defined via Mittag–Leffler Function on Hilbert Space. Symmetry, 17(5), 728. https://doi.org/10.3390/sym17050728