Loss of Exponential Stability for a Delayed Timoshenko System Symmetrically in Both Viscoelasticity and Fractional Boundary Controls
Abstract
:1. Introduction and Statement of the Problem
2. Preliminary and Augmented System
3. Lack of Exponential Stability When
4. Polynomial Stability When
5. Conclusions
- When , we found a lack of exponential stability decay rate;
- When , we found a polynomial decay rate.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munoz Rivera, J.E.; Racke, R. Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 2008, 341, 1068–1083. [Google Scholar] [CrossRef]
- Freitas, P.; Zuazua, E. Stability results for the wave equation with indefinite damping. J. Diff. Equ. 1996, 132, 338–353. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Z.; Rao, B. Exponential stability of an abstract nondissipative linear system. SIAM J. Control Optim. 2001, 40, 149–165. [Google Scholar] [CrossRef]
- Benaddi, A.; Rao, B. Energy decay rate of wave equations with indefinite damping. J. Diff. Equ. 2000, 161, 337–357. [Google Scholar] [CrossRef]
- Mustafa, M.I. Viscoelastic Timoshenko beams with variable-exponent nonlinearity. J. Math. Anal. Appl. 2022, 516, 126520. [Google Scholar] [CrossRef]
- Sabrine, C.; Makram, H. Discrete energy behavior of a damped Timoshenko system. Comp. Appl. Math. 2020, 39, 4. [Google Scholar] [CrossRef]
- Zhang, H.-E.; Xu, G.-Q.; Chen, H. Stability of a viscoelastic Timoshenko system with non-monotonic kernel. Appl. Anal. 2022, 102, 2692–2723. [Google Scholar] [CrossRef]
- Mizhidon, A.D.; Barguev, S.G.; Dabaeva, M.Z. Free Vibrations of Two-Span Timoshenko Beams with Adjoint Oscillator. Syst. Anal. Model. 2013, 4, 34–38. [Google Scholar]
- Braik, A.; Mirgani, S.M.; Hassan, E.I.; Zennir, K. Well-Posedness and Energy Decay Rates for a Timoshenko-Type System with Internal Time-Varying Delay in the Displacement. Symmetry 2023, 15, 1878. [Google Scholar] [CrossRef]
- Yesilce, Y.; Demirdag, O.; Catal, S. Free Vibrations of a Multi-Span Timoshenko Beam Carrying Multiple Spring-Mass Systems. Sadhana 2008, 33, 385–401. [Google Scholar] [CrossRef]
- Dridi, H.; Zennir, K. Well-posedness and energy decay for some thermoelastic systems of Timoshenko type with Kelvin–Voigt damping. SeMA J. 2021, 78, 385–400. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Tsai, Y.-K. Nonlinear vibrations of Timoshenko pipes conveying fluid. Int. J. Solids Struct. 1997, 34, 2945–2956. [Google Scholar] [CrossRef]
- Paidoussis, P.M.; Lu, T.P.; Laithier, B.E. Dynamics of finite-length tubular beams conveying fluid. J. Sound Vibr. 1986, 106, 311–331. [Google Scholar] [CrossRef]
- Nematollahi, M.S.; Mohammadi, H.; Taghvaei, S. Fluttering and divergence instability of functionally graded viscoelastic nanotubes conveying fluid based on nonlocal strain gradient theory. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 033108. [Google Scholar] [CrossRef]
- Choi, J.U.; Maccamy, R.C. Fractional order Volterra equations with applications to elasticity. J. Math. Anal. Appl. 1989, 139, 448–464. [Google Scholar] [CrossRef]
- Mbodje, B. Wave energy decay under fractional derivative controls. IMA J. Math. Contr. Infor. 2006, 23, 237–257. [Google Scholar] [CrossRef]
- Benaissa, A.; Gaouar, S. Stability result of the Lame’ system with a delay term in the internal fractional feedback. Acta Univ. Sapientiae Math. 2021, 13, 336–355. [Google Scholar] [CrossRef]
- Dridi, D.; Feng, B.; Zennir, K. Stability of the Timoshenko system coupled with the thermal law of Gurtin-Pipkin affecting shear force. Appl. Anal. 2021, 101, 5171–5192. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadoun, M.B.; Cherif, A.B.; Bentifour, R.; Bouhali, K.; Biomy, M.; Zennir, K. Loss of Exponential Stability for a Delayed Timoshenko System Symmetrically in Both Viscoelasticity and Fractional Boundary Controls. Symmetry 2025, 17, 423. https://doi.org/10.3390/sym17030423
Sadoun MB, Cherif AB, Bentifour R, Bouhali K, Biomy M, Zennir K. Loss of Exponential Stability for a Delayed Timoshenko System Symmetrically in Both Viscoelasticity and Fractional Boundary Controls. Symmetry. 2025; 17(3):423. https://doi.org/10.3390/sym17030423
Chicago/Turabian StyleSadoun, Mokhtaria Bouariba, Amine Benaissa Cherif, Rachid Bentifour, Keltoum Bouhali, Mohamed Biomy, and Khaled Zennir. 2025. "Loss of Exponential Stability for a Delayed Timoshenko System Symmetrically in Both Viscoelasticity and Fractional Boundary Controls" Symmetry 17, no. 3: 423. https://doi.org/10.3390/sym17030423
APA StyleSadoun, M. B., Cherif, A. B., Bentifour, R., Bouhali, K., Biomy, M., & Zennir, K. (2025). Loss of Exponential Stability for a Delayed Timoshenko System Symmetrically in Both Viscoelasticity and Fractional Boundary Controls. Symmetry, 17(3), 423. https://doi.org/10.3390/sym17030423