Combinatorial Analysis of k-Oresme and k-Oresme–Lucas Sequences
Abstract
:1. Introduction
2. Definitions and Properties of k-Oresme and k-Oresme–Lucas Sequences
3. Combinatorial Identities of the k-Oresme and k-Oresme–Lucas Sequences
3.1. Sum Formulas from Characteristic Equation
3.2. Sum Formulas from Binomail Properties
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boman, B.M.; Dinh, T.N.; Decker, K.; Emerick, B.; Raymond, C.; Schleiniger, G. Why do Fibonacci Numbers Appear in Patterns of Growth in Nature? Fibonacci Q. 2017, 55, 30–41. [Google Scholar] [CrossRef]
- Zhu, Y. Visualization techniques for the design and analysis of dynamic programming algorithms. In Proceedings of the 28th International Conference on Information Visualization (IV), Coimbra, Portugal, 22–26 July 2024; pp. 1–6. [Google Scholar]
- Allahyari Soeini, R.; Niroomand, A.; Kheyrmand Parizi, A. Using Fibonacci numbers to forecast the stock market. Int. J. Manag. Sci. Eng. Manag. 2012, 7, 268–279. [Google Scholar] [CrossRef]
- Aydınuz, S.; Aşcı, M. Error detection and correction for coding theory on k-order Gaussian Fibonacci matrices. Math. Biosci. Eng. 2022, 20, 1993–2010. [Google Scholar] [CrossRef]
- Bellini, E.; Marcolla, C.; Murru, N. An application of p-Fibonacci error-correcting codes to cryptography. Mathematics 2021, 9, 789. [Google Scholar] [CrossRef]
- Vivek; Kumar, M. Solution of linear and nonlinear singular value problems using operational matrix of integration of Fibonacci wavelets. J. Eng. Math. 2024, 145, 19. [Google Scholar] [CrossRef]
- Ulçan, A. The Relationship Between the Golden Ratio and Fibonacci Numbers with Music. Master’s Thesis, Bingöl University, Bingöl, Turkey, 2023. [Google Scholar]
- Falcon, S.; Plaza, A. On the Fibonacci k-numbers. Chaos Solitons Fractals 2007, 32, 1615–1624. [Google Scholar] [CrossRef]
- Horadam, A.F. A generalized Fibonacci sequence. Am. Math. Mon. 1961, 68, 455–459. [Google Scholar] [CrossRef]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Vajda, S. Fibonacci and LUCAS NUMBERS and the Golden Section; Ellis Horwood Limited: Chichester, UK, 1989. [Google Scholar]
- Spreafico, E.V.; Catarino, P.M.M.C. On generalized Oresme numbers and the Fibonacci fundamental system. Rev. Sergip. Mat. Educ. Mat. 2024, 9, 68–80. [Google Scholar] [CrossRef]
- Özkan, E.; Akkuş, H.; Özkan, A. Properties of Generalized Bronze Fibonacci Sequences and Their Hyperbolic Quaternions. Axioms 2025, 14, 14. [Google Scholar] [CrossRef]
- Kızılateş, C.; Du, W.-S.; Terzioğlu, N. On Higher-Order Generalized Fibonacci Hybrinomials: New Properties, Recurrence Relations and Matrix Representations. Mathematics 2024, 12, 1156. [Google Scholar] [CrossRef]
- Çolak, E.G.; Gönül Bilgin, N.; Soykan, Y. On Generalized Fibospinomials: Generalized Fibonacci Polynomial Spinors. Symmetry 2024, 16, 694. [Google Scholar] [CrossRef]
- Kalman, D.; Mena, R. The Fibonacci numbers-exposed. Math. Mag. 2003, 76, 167–181. [Google Scholar]
- Rabinowitz, S. Algorithmic manipulation of Fibonacci identities. In Applications of Fibonacci Numbers; Kluwer Academic Publishers: Totnes, UK, 1996; Volume 6, pp. 389–408. [Google Scholar]
- Ribenboim, P. The Little Book of Big Primes; Springer: Berlin, Germany, 1991. [Google Scholar]
- Ribenboim, P. My Numbers, My Friends; Springer: Berlin, Germany, 2000. [Google Scholar]
- Horadam, A.F. Oresme numbers. Fibonacci Q. 1974, 12, 267–271. [Google Scholar] [CrossRef]
- Liana, S.A.; Wloch, I. Oresme hybrid numbers and hybrationals. Kragujevac J. Math. 2024, 48, 747–753. [Google Scholar] [CrossRef]
- Halıcı, S.; Sayın, E. On some k-Oresme hybrid numbers. Util. Math. 2023, 120, 1–11. [Google Scholar]
- Goy, T.; Zatorsky, R. On Oresme numbers and their connection with Fibonacci and Pell numbers. Fibonacci Q. 2019, 57, 238–245. [Google Scholar] [CrossRef]
- Aktaş, S.; Soykan, Y. On the Norms of Toeplitz Matrices with the Generalized Oresme Numbers. Asian J. Adv. Res. Rep. 2023, 17, 41–57. [Google Scholar] [CrossRef]
- Ertaş, A.; Yılmaz, F. On Quaternions with Gaussian Oresme Coefficients. Turk. J. Math. Comput. Sci. 2023, 15, 192–202. [Google Scholar]
- Morales, C.G. Oresme Polynomials and Their Derivatives. arXiv 2019, arXiv:1904.01165. [Google Scholar]
- Halıcı, S.; Gür, Z.B. On some derivatives of k-Oresme polynomials. Bull. Int. Math. Virtual Inst. 2023, 13, 41–50. [Google Scholar]
- Sayın, E.; Halıcı, S. On Oresme numbers and their geometric interpretations. J. Inst. Sci. Technol. 2024, 14, 1291–1300. [Google Scholar]
- Halıcı, S.; Sayın, E.; Gür, Z.B. k-Oresme numbers and k-Oresme numbers with negative indices. In International Conference on Mathematics and Its Applications in Science and Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 211–223. [Google Scholar]
- Knuth, D.E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1997. [Google Scholar]
- Sastry, S.S. Introductory Methods of Numerical Analysis, 5th ed.; PHI Learning Pvt. Ltd.: New Delhi, India, 2012. [Google Scholar]
- Alves, F.R.V. Sequência de Oresme e algumas propriedades (matriciais) generalizadas. CQD-Rev. Electron. Paul. Math. 2019, 16, 28–52. [Google Scholar]
- Gross, J.L.; Yellen, J.; Zhang, P. (Eds.) Handbook of Graph Theory, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2013. [Google Scholar]
- Dorigo, M.; Stützle, T. Ant Colony Optimization; The MIT Press: Cambridge, MA, USA, 2004; p. 305. [Google Scholar]
- Busard, H.L.L. Nicole Oresme: Quaestiones Super Geometrian Euclidis; Franz Steiner Verlag: Stuttgart, Germany, 1961. [Google Scholar]
- Cook, C.K. Some sums related to sums of Oresme numbers. In Proceedings of the 10th International Research Conference on Fibonacci Numbers and Their Applications; Springer: Dordrecht, The Netherlands, 2004; Volume 9, pp. 87–99. [Google Scholar]
- Özkan, E.; Akkuş, H. A New Approach to k-Oresme and k-Oresme-Lucas Sequences. Symmetry 2024, 16, 1407. [Google Scholar] [CrossRef]
- Amini, A.R. Fibonacci numbers from a long division formula. Math. Spectrum. 2008, 40, 59–61. [Google Scholar]
- Demirtürk, B. A Matrix-Based Examination of k-Fibonacci and k-Oresme Sequences: Identities and Some Equation Solutions. Commun Algebra. 2025; in submitted. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirtürk, B. Combinatorial Analysis of k-Oresme and k-Oresme–Lucas Sequences. Symmetry 2025, 17, 697. https://doi.org/10.3390/sym17050697
Demirtürk B. Combinatorial Analysis of k-Oresme and k-Oresme–Lucas Sequences. Symmetry. 2025; 17(5):697. https://doi.org/10.3390/sym17050697
Chicago/Turabian StyleDemirtürk, Bahar. 2025. "Combinatorial Analysis of k-Oresme and k-Oresme–Lucas Sequences" Symmetry 17, no. 5: 697. https://doi.org/10.3390/sym17050697
APA StyleDemirtürk, B. (2025). Combinatorial Analysis of k-Oresme and k-Oresme–Lucas Sequences. Symmetry, 17(5), 697. https://doi.org/10.3390/sym17050697