From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy
Abstract
:1. Introduction
2. Formalism
2.1. The Peccei-Quinn Model
2.2. Axion–Neutrino Couplings
2.3. The Search for Neutrino Mass in Rare Nuclear Decays
2.4. Propagation of Neutrinos in a Dark Matter Environment
2.5. Basic Notions About Bose–Einstein Condensation
3. Numerical Estimates
3.1. The Effective Neutrino Mass
3.2. BEC Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bozorgnia, N.; Bramante, J.; Cline, J.M.; Curtin, D.; McKeen, D.; Morrissey, D.E.; Ritz, A.; Viel, S.; Vincent, A.C.; Zhang, Y. Dark Matter Candidates and Searches. arXiv 2024, arXiv:2410.23454. [Google Scholar] [CrossRef]
- Balazs, C.; Bringmann, T.; Kahlhoefer, F.; White, M. A Primer on Dark Matter. arXiv 2024, arXiv:2411.05062. [Google Scholar] [CrossRef]
- Garrett, K.; Duda, G. Dark matter: A primer. Adv. Astron. 2011, 2011, 968283. [Google Scholar] [CrossRef]
- Freese, K.; Lisanti, M.; Savage, C. Colloquium: Annual modulation of dark matter. Rev. Mod. Phys. 2013, 85, 1561–1581. [Google Scholar] [CrossRef]
- La Fortune, J.M. The Global Escape Velocity Profile and Virial Mass Estimate of The Milky Way Galaxy from Gaia Observations. arXiv 2022, arXiv:2210.08264. [Google Scholar] [CrossRef]
- Serra, A.L.; Diaferio, A.; Murante, G.; Borgani, S. Measuring the escape velocity and mass profiles of galaxy clusters beyond their virial radius. Mon. Not. R. Astron. Soc. 2011, 412, 800–816. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Macmillan: New York, NY, USA, 1973. [Google Scholar]
- Civitarese, O. The Neutrino Mass Problem: From Double Beta Decay to Cosmology. Universe 2023, 9, 275. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef]
- Kuster, M.; Raffelt, G.; Beltrán, B. Axions: Theory, Cosmology, and Experimental Searches; Springer: Berlin/Heidelberg, Germany, 2007; Volume 741. [Google Scholar]
- Bianchini, F.; Maniyar, A.S. The Cosmic Microwave Background – Secondary Anisotropies. arXiv 2025, arXiv:2501.13913. [Google Scholar] [CrossRef]
- Scott, D.; Smoot, G.F. Cosmic Microwave Background Mini-review. arXiv 2010, arXiv:1005.0555. [Google Scholar] [CrossRef]
- Efstathiou, G.; Sutherland, W.J.; Maddox, S. The cosmological constant and cold dark matter. Nature 1990, 348, 705–707. [Google Scholar] [CrossRef]
- Turner, M.S. CDM: Much More Than We Expected, but Now Less Than What We Want. Found. Phys. 2018, 48, 1261–1278. [Google Scholar] [CrossRef]
- Wang, D.; Jia, C.P.; Yu, F.S. A self-consistent framework of topological amplitude and its SU(N) decomposition. J. High Energy Phys. 2021, 2021, 126. [Google Scholar] [CrossRef]
- Suhonen, J.; Civitarese, O. Weak-interaction and nuclear-structure aspects of nuclear double beta decay. Phys. Rep. 1998, 300, 123–214. [Google Scholar] [CrossRef]
- Weinberg, S.; Greenberg, O.W. The Quantum Theory of Fields: Foundations. Phys. Today 1995, 48, 78. [Google Scholar] [CrossRef]
- Reig, M.; Valle, J.W.; Wilczek, F. SO(3) family symmetry and axions. Phys. Rev. D 2018, 98, 095008. [Google Scholar] [CrossRef]
- Peccei, R.D. The Strong CP Problem and Axions. In Axions; Kuster, M., Raffelt, G., Beltrán, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 741, p. 3. [Google Scholar] [CrossRef]
- Peccei, R.D. Axion Properties & Prospects. In Proceedings of the SnowDARK 2013, Salt Lake City, UT, USA, 22–25 March 2013; p. 14. [Google Scholar]
- Peccei, R.D.; Quinn, H.R. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Wilczek, F. Axions and family symmetry breaking. Phys. Rev. Lett. 1982, 49, 1549. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef]
- Civitarese, O. On the Breaking of the U(1) Peccei-Quinn Symmetry and Its Implications for Neutrino and Dark Matter Physics. Symmetry 2024, 16, 364. [Google Scholar] [CrossRef]
- Reynoso, M.; Sampayo, O.; Carullui, A.M. Neutrino inteactions with ultralight axion-like dark matter. Eur. Phys. J. C 2022, 82, 274. [Google Scholar] [CrossRef]
- Bonilla, J.; Gavela, B.; Mchado-Rodriguez, J. Limits on ALP-neutrino couplings from one loop level. Phys. Rev. D 2024, 109, 055023. [Google Scholar] [CrossRef]
- Peinado, E.; Reig, M.; Srivastava, R.; Valle, J.W. Dirac neutrinos from Peccei-Quinn symmetry: A fresh look at the axion. Mod. Phys. Lett. A 2020, 21, 2050176. [Google Scholar] [CrossRef]
- Ahn, Y.; Chun, E. Minimal Models for Axion and Neutrino. Phys. Lett. B. 2016, 752, 2050176. [Google Scholar] [CrossRef]
- Sikivie, P.; Yang, Q. Bose-Einstein condensation of dark matter axions. Phys. Rev. Lett. 2009, 103, 111301. [Google Scholar] [CrossRef]
- Chadha-Day, F.; Ellis, J.; Marsh, D.J.E. Axion Dark Matter: What is it and Why Now? arXiv 2021, arXiv:2105.01406. [Google Scholar] [CrossRef]
- Bartram, C.; Braine, T.; Cervantes, R.; Crisosto, N.; Du, N.; Leum, G.; Rosenberg, L.J.; Rybka, G.; Yang, J.; Bowring, D.; et al. Axion dark matter experiment: Run 1B analysis details. Phys. Rev. D 2021, 103, 032002. [Google Scholar] [CrossRef]
- Ejlli, A.; Della Valle, F.; Gastaldi, U.; Messineo, G.; Pengo, R.; Ruoso, G.; Zavattini, G. The PVLAS experiment: A 25 year effort to measure vacuum magnetic birefringence. Phys. Rep. 2020, 871, 1–74. [Google Scholar] [CrossRef]
- Álvarez Melcón, A.; Arguedas Cuendis, S.; Baier, J.; Barth, K.; Bräuninger, H.; Calatroni, S.; Cantatore, G.; Caspers, F.; Castel, J.F.; Cetin, S.A.; et al. First results of the CAST-RADES haloscope search for axions at 34.67 μeV. J. High Energy Phys. 2021, 2021, 75. [Google Scholar] [CrossRef]
- Arik, M.; Aune, S.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J.; Cetin, S.; Collar, J.; et al. Search for Sub-eV Mass Solar Axions by the CERN Axion Solar Telescope with He3 Buffer Gas. Phys. Rev. Lett. 2011, 107, 261302. [Google Scholar] [CrossRef]
- Ringwald, A. Alternative dark matter candidates: Axions. arXiv 2016, arXiv:1612.08933. [Google Scholar]
- Shin, M. Light-neutrino masses and the strong CP problem. Phys. Rev. Lett. 1987, 59, 2515–2518. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Smirnov, A.Y. Neutrino Mass and New Physics. Annu. Rev. Nucl. Part. Sci. 2006, 56, 569–628. [Google Scholar] [CrossRef]
- Kajino, T.; Aoki, W.; Balantekin, A.B.; Cheoun, M.K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G.J.; Nakamura, K.; et al. Cosmological and supernova neutrinos. AIP Conf. Proc. 2014, 1604, 193–200. [Google Scholar] [CrossRef]
- Boehm, F.; Vogel, P. Physics of Massive Neutrinos; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Tomoda, T. Double beta decay. Rep. Prog. Phys. 1991, 54, 53–126. [Google Scholar] [CrossRef]
- Penacchioni, A.V.; Civitarese, O. Constraining the axion mass from the nonobservation of 0νββ decay. Int. J. Mod. Phys. E 2022, 31, 2250038. [Google Scholar] [CrossRef]
- Colombi, M.P.; Civitarese, O.; Penacchioni, A.V. Does the DM background affect the propagation of extragalactic neutrinos? Int. J. Mod. Phys. E 2021, 30, 2150081. [Google Scholar] [CrossRef]
- Penacchioni, A.V.; Civitarese, O.; Argüelles, C.R. Testing dark matter distributions by neutrino-dark matter interactions. Eur. Phys. J. C 2020, 80, 183. [Google Scholar] [CrossRef]
- Penacchioni, A.V.; Civitarese, O. Neutrino Oscillations and Decoherence in Short-GRB Progenitors. Astrophys. J. 2019, 872, 73. [Google Scholar] [CrossRef]
- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995; Volume 1. [Google Scholar] [CrossRef]
- Civitarese, O.; Fushimi, K.J.; Mosquera, M.E. Calculated WIMP signals at the ANDES laboratory: Comparison with northern and southern located dark matter detectors. J. Phys. G Nucl. Phys. 2016, 43, 125201. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.K.; Thonnard, N. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc). Astrophys. J. 1980, 238, 471–487. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Ghoneim, N.; Akrami, Y.; Shadoun, M.; Ament, J.; Bakjalb, S.; Balardani, M.; Pandey, A.J.; Brier, R.B.; Bertoula, N.; Bask, S. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Boyarsky, A.; Drewes, M.; Lasserre, T.; Mertens, S.; Ruchayskiy, O. Sterile neutrino Dark Matter. Prog. Part. Nucl. Phys. 2019, 104, 1–45. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390. [Google Scholar] [CrossRef]
- Davis, J.H. The past and future of light dark matter direct detection. Int. J. Mod. Phys. A 2015, 30, 1530038. [Google Scholar] [CrossRef]
- Kim, J.E.; Carosi, G. Axions and the strong CP problem. Rev. Mod. Phys. 2010, 82, 557–601. [Google Scholar] [CrossRef]
- Feng, J.L.; Kumar, J. Dark-Matter Particles without Weak-Scale Masses or Weak Interactions. Phys. Rev. Lett. 2008, 101, 231301. [Google Scholar] [CrossRef]
- Dumont, B.; Bélanger, G.; Fichet, S.; Kraml, S.; Schwetz, T. Mixed sneutrino dark matter in light of the 2011 XENON and LHC results. J. Cosmol. Astropart. Phys. 2012, 2012, 013. [Google Scholar] [CrossRef]
- Jungman, G.; Kamionkowski, M.; Griest, K. Supersymmetric dark matter. Phys. Rep. 1996, 267, 195–373. [Google Scholar] [CrossRef]
- Langacker, P. The physics of heavy Z′ gauge bosons. Rev. Mod. Phys. 2009, 81, 1199–1228. [Google Scholar] [CrossRef]
- Heeck, J.; Patra, S. Minimal Left-Right Symmetric Dark Matter. Phys. Rev. Lett. 2015, 115, 121804. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.J.; Helaÿel-Neto, J.A. TeV- and MeV-Physics Out of an SUL(2) × UR(1)J × U(1)K Model. Ann. Phys. 2017, 530, 1700112. [Google Scholar] [CrossRef]
- Ling, F.S.; Nezri, E.; Athanassoula, E.; Teyssier, R. Dark matter direct detection signals inferred from a cosmological N-body simulation with baryons. J. Cosmol. Astropart. Phys. 2010, 2010, 012. [Google Scholar] [CrossRef]
- Civitarese, O.; Gadella, M. Methods in Statistical Mechanics. A Modern View; Springer: Cham, Switzerland, 2020; Volume 974. [Google Scholar] [CrossRef]
Fraction | ||
---|---|---|
9.9 | 5.217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Civitarese, O.; Orsaria, M.G.; Penacchioni, A.V. From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy. Symmetry 2025, 17, 680. https://doi.org/10.3390/sym17050680
Civitarese O, Orsaria MG, Penacchioni AV. From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy. Symmetry. 2025; 17(5):680. https://doi.org/10.3390/sym17050680
Chicago/Turabian StyleCivitarese, Osvaldo, Milva G. Orsaria, and Ana V. Penacchioni. 2025. "From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy" Symmetry 17, no. 5: 680. https://doi.org/10.3390/sym17050680
APA StyleCivitarese, O., Orsaria, M. G., & Penacchioni, A. V. (2025). From Axion—Neutrino Couplings to Axion Thermodynamics: Testing the Axion Mass Hierarchy. Symmetry, 17(5), 680. https://doi.org/10.3390/sym17050680