Some New Results Connected with Symmetric Random Variables: Generating Skew Distributions
Abstract
:1. Introduction
2. Main Results
- , where is an even function and ;
- , where is an even function, , , and ;
- , where is an even function , , and ;
- , where is an even function and .
Risk Measures in the Tail of the Distribution
3. Beyond Azzalini’s Scheme
3.1. First Proposal
3.2. Second Proposal to Be Studied
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, J.; Campbell, B. Handbook of the Normal Distribution; Marcel Dekker, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Azzalini, A. The Skew-Normal and Related Families; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Silver, E.A.; Costa, D. A property of symmetric distributions and a related order statistic result. Am. Stat. 1997, 51, 32–33. [Google Scholar] [CrossRef]
- Hershkorn, S.J.; Chapman, R.J. Symmetric random variables. Am. Math. Mon. 1998, 105, 670. [Google Scholar] [CrossRef]
- Jones, M.C. Generating distributions by transformations of scale. Stat. Sin. 2014, 24, 749–771. [Google Scholar] [CrossRef]
- Behboodian, J. Uncorrelated dependent random variables. Math. Mag. 1987, 51, 303–304. [Google Scholar] [CrossRef]
- Anderson, N. Integration of inverse functions. Math. Gaz. 1970, 54, 52–53. [Google Scholar] [CrossRef]
- Artzner, P.; Delbaen, F.; Eber, J.M.; Heath, D. Coherent measures of risk. Math. Financ. 1999, 9, 203–228. [Google Scholar] [CrossRef]
- Klugman, S.A.; Panjer, H.H.; Willmot, G.E. Loss Models. From Data to Decisions, 3rd ed.; John Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Furman, E.; Zitikis, R. Weighted premium calculation principles. Insur. Math. Econ. 2008, 42, 459–465. [Google Scholar] [CrossRef]
- Furman, E.; Zitikis, R. Weighted risk capital allocations. Insur. Math. Econ. 2008, 42, 263–269. [Google Scholar] [CrossRef]
- Goovaerts, M.J.; De Vijlder, F.E.; Haezendonck, J. Insurance Premiums: Theory and Applications; North-Holland: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Chen, H.; Fan, K. Tail Value-at-Risk-based expectiles for extreme risks and their application in distributionally robust selections. Mathematics 2022, 11, 91. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
- Jones, M.C. Families of distributions arising from distributions of order statistics. Test 2004, 13, 1–43. [Google Scholar] [CrossRef]
- Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178. [Google Scholar]
- Azzalini, A.; Valle, A. The multivariate skew-normal distribution. Biometrika 1996, 83, 715–726. [Google Scholar] [CrossRef]
- Azzalini, A.; Capitanio, A. Statistical applications of the multivariate skew-normal distribution. J. R. Stat. Soc. Ser. B 1999, 61, 579–602. [Google Scholar] [CrossRef]
- Gómez, H.; Venegas, O.; Bolfarine, H. Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 2007, 18, 395–407. [Google Scholar] [CrossRef]
- Gómez-Déniz, E.; Arnold, B.C.; Sarabia, J.M.; Gómez, W.H. Properties and applications of a new family of skew distributions. Mathematics 2021, 9, 87. [Google Scholar] [CrossRef]
- Gómez-Déniz, E.; Calderín-Ojeda, E.; Sarabia, J.M. Bimodal and multimodal extensions of the normal and skew normal distributions. REVSTAT-Stat. J. 2023, in press. [Google Scholar]
- Gómez-Déniz, E.; Sarabia, J.M.; Calderín-Ojeda, E. Bimodal normal distribution: Extensions and applications. J. Comput. Appl. Math. 2020, 388, 113292. [Google Scholar] [CrossRef]
- Monter-Pozos, A.; González, E. On testing the skew normal distribution by using Shapiro–Wilk test. J. Comput. Appl. Math. 2024, 440, 115649. [Google Scholar] [CrossRef]
- Mondal, S.; Arellano-Valle, R.B.; Genton, M.G. A multivariate modified skew-normal distribution. Stat. Pap. 2024, 65, 511–555. [Google Scholar] [CrossRef]
- Martínez-Flores, G.; Barrera-Causil, C.; Marmolejo-Ramos, F. The exponential-centred skew-normal distribution. Symmetry 2020, 12, 1140. [Google Scholar] [CrossRef]
- Azzalini, A.; Bowman, A. A look at some data on the old faithful geyser. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1990, 39, 357–365. [Google Scholar] [CrossRef]
- Ellison, B. Two theorems for inferences about the normal distribution with applications in acceptance sampling. J. Am. Stat. Assoc. 1964, 59, 89–95. [Google Scholar] [CrossRef]
- Zacks, S. Parametric Statistical Inference; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Slobin, H. A theorem on improper definite integrals. Am. Math. Mon. 1927, 34, 265–266. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Déniz, E.; Sarabia, J.M. Some New Results Connected with Symmetric Random Variables: Generating Skew Distributions. Symmetry 2025, 17, 670. https://doi.org/10.3390/sym17050670
Gómez-Déniz E, Sarabia JM. Some New Results Connected with Symmetric Random Variables: Generating Skew Distributions. Symmetry. 2025; 17(5):670. https://doi.org/10.3390/sym17050670
Chicago/Turabian StyleGómez-Déniz, Emilio, and José María Sarabia. 2025. "Some New Results Connected with Symmetric Random Variables: Generating Skew Distributions" Symmetry 17, no. 5: 670. https://doi.org/10.3390/sym17050670
APA StyleGómez-Déniz, E., & Sarabia, J. M. (2025). Some New Results Connected with Symmetric Random Variables: Generating Skew Distributions. Symmetry, 17(5), 670. https://doi.org/10.3390/sym17050670