Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function
Abstract
:1. Introduction
2. Auxiliary Results
3. Some CM Functions Involving and
4. Sharp Symmetric Bounds for Bateman’s -Function
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables; Dover: New York, NY, USA, 1965. [Google Scholar]
- Bateman, H.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G.; Bertin, D.; Fulks, W.B.; Harvey, A.R.; Thomsen, D.L., Jr.; Weber, M.A.; Whitney, E.L.; et al. Higher Transcendental Functions; California Institute of Technology—Bateman Manuscript Project, 1953–1955; McGraw-Hill Inc.: New York, NY, USA, 1953; reprinted by Krieger Inc.: Malabar, FL, USA, 1981; Volume 1–3. [Google Scholar]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Oldham, K.; Myland, J.; Spanier, J. An Atlas of Functions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Qiu, S.-L.; Vuorinen, M. Some properties of the gamma and psi functions with applications. Math. Comp. 2005, 74, 723–742. [Google Scholar] [CrossRef]
- Mahmoud, M.; Agarwal, R.P. Bounds for Bateman’s G-function and its applications. Georgian Math. J. 2016, 23, 579–586. [Google Scholar]
- Mahmoud, M.; Talat, A.; Moustafa, H. Some approximations of the Bateman’s G-function. J. Comput. Anal. Appl. 2017, 23, 1165–1178. [Google Scholar]
- Hegazi, A.; Mahmoud, M.; Talat, A.; Moustafa, H. Some best approximation formulas and inequalities for the Bateman’s G-function. J. Comput. Anal. Appl. 2019, 27, 118–135. [Google Scholar]
- Nantomah, K. New Inequalities for Nielsen’s Beta Function. Commun. Math. Appl. 2019, 10, 773–781. [Google Scholar] [CrossRef]
- Mahmoud, M.; Talat, A.; Moustafa, H.; Agarwal, R.P. Completely monotonic functions involving Bateman’s G-function. J. Comput. Anal. Appl. 2021, 29, 970–986. [Google Scholar]
- Mahmoud, M.; Almuashi, H. Two Approximation Formulas for Bateman’s G-functionwith Bounded Monotonic Errors. Mathematics 2022, 10, 4787. [Google Scholar] [CrossRef]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Mahmoud, M.; Qi, F. Bounds for completely monotonic degrees of remainders in asymptotic expansions of the digamma function. Math. Inequalities Appl. 2022, 25, 291–306. [Google Scholar] [CrossRef]
- Burić, T.; Elezović, N. Some completely monotonic functions related to the psi function. Math. Inequalities Appl. 2011, 14, 679–691. [Google Scholar] [CrossRef]
- Qi, F. Completely monotonic degree of a function involving trigamma and tetragamma functions. AIMS Math. 2020, 5, 3391–3407. [Google Scholar] [CrossRef]
- Qi, F.; Agarwal, R.P. On complete monotonicity for several classes of functions related to ratios of gamma functions. J. Inequal. Appl. 2019, 36, 42. [Google Scholar] [CrossRef]
- Qi, F.; Li, W.-H. Integral representations and properties of some functions involving the logarithmic function. Filomat 2016, 30, 1659–1674. [Google Scholar] [CrossRef]
- Qi, F.; Wang, S.-H. Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions. Glob. J. Math. Anal. 2014, 2, 91–97. [Google Scholar] [CrossRef]
- Qi, F.; Guo, S.; Guo, B.-N. Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 2010, 233, 2149–2160. [Google Scholar] [CrossRef]
- Zhu, L. Completely monotonic integer degrees for a class of special functions. AIMS Math. 2020, 5, 3456–3471. [Google Scholar] [CrossRef]
- Mortici, C. New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 2010, 23, 97–100. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustafa, H.; Al Sayed, W. Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function. Symmetry 2025, 17, 563. https://doi.org/10.3390/sym17040563
Moustafa H, Al Sayed W. Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function. Symmetry. 2025; 17(4):563. https://doi.org/10.3390/sym17040563
Chicago/Turabian StyleMoustafa, Hesham, and Waad Al Sayed. 2025. "Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function" Symmetry 17, no. 4: 563. https://doi.org/10.3390/sym17040563
APA StyleMoustafa, H., & Al Sayed, W. (2025). Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function. Symmetry, 17(4), 563. https://doi.org/10.3390/sym17040563