Next Article in Journal
An Improved Variable Step-Size Maximum Power Point Tracking Control Strategy with the Mutual Inductance Identification for Series–Series Wireless Power Transfer Systems
Next Article in Special Issue
Some New Inequalities for the Gamma and Polygamma Functions
Previous Article in Journal
A Design Approach for Asymmetric Coupled Line In-Phase Power Dividers with Arbitrary Terminal Real Impedances and Arbitrary Power Division Ratio
Previous Article in Special Issue
A New Generalization of q-Laguerre-Based Appell Polynomials and Quasi-Monomiality
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function

Department of Mathematics and Statistics, College of Sciences and Humanities, Fahad Bin Sultan University, P.O. Box 15700, Tabuk 71454, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Symmetry 2025, 17(4), 563; https://doi.org/10.3390/sym17040563
Submission received: 16 March 2025 / Revised: 3 April 2025 / Accepted: 5 April 2025 / Published: 8 April 2025

Abstract

:
In this paper, we present some new symmetric bounds for Bateman’s G-function and its derivatives, in terms of the digamma and polygamma functions, which are better than some recent results.

1. Introduction

The digamma function is defined by [1]:
ψ ( y ) = d d y ln Γ ( y ) = 0 1 t e t e ( 1 y ) t e t 1 d t , y > 0
where Γ ( y ) is the ordinary Gamma function and ψ ( y ) satisfies the functional equation [1]:
ψ ( h ) ( 1 + y ) ψ ( h ) ( y ) = ( 1 ) h h ! y 1 + h , h N { 0 }
and it has the asymptotic formula:
ψ ( y ) ln y 1 2 y k = 1 B 2 k 2 k y 2 k , y
where B r s are the Bernoulli numbers. Polygamma functions are defined by [1]:
ψ ( h ) ( y ) = 0 ( 1 ) h 1 t h e ( 1 y ) t e t 1 d t , y > 0 , h N .
Bateman’s G-function is given by [2]:
G ( y ) = ψ ( 1 + y ) / 2 ψ y / 2 , y 0 , 1 , 2 ,
and it has the integral formula:
1 2 G ( y ) = 0 e ( 1 y ) t e t + 1 d t , y > 0
and it satisfies the following relations:
G ( y + 1 ) = 2 y G ( y )
The function G ( y ) is used in calculating some hypergeometric functions [3]:
F 1 2 ( 1 , y ; y + 1 ; 1 ) = y 2 G ( y ) , y 0 , 1 , 2 ,
and calculating some alternating series [4]:
s = 0 ( 1 ) s s b + d = 1 2 b G d b , d 0 , b , 2 b , .
In 2005, Qiu and Vuorinen [5] presented the following inequality for G ( y ) :
1 y + 6 + ln ( 1 / 256 ) y 2 < G ( y ) < y 1 + y 2 2 , 2 y > 1 .
In 2016, the following asymptotic formula for G ( y ) was introduced by [6]:
G ( y ) 1 y + k = 1 ( 4 k 1 ) B 2 k k y 2 k , y
and the following symmetric inequality was deduced:
1 2 ( y 2 + 3 / 4 ) < G ( y ) 1 y < 1 2 y 2 , y > 0
which refines the lower bound of (6) for y > 6 ln 4 9 11 8 ln 4 . In 2017, Mahmoud, Talat, and Moustafa [7] deduced the following symmetric inequality:
ln 1 y + 4 e 2 4 + 1 + 2 y ( 1 + y ) < G ( y ) < ln 1 1 + y + 1 + 2 y ( 1 + y ) , y ( 0 , ) .
In 2019, Hegazi, Mahmoud, Talat, and Moustafa [8] deduced an improvement for inequality (9) by the symmetric inequality:
ln 1 y + 2 3 + 1 + 1 + 2 3 y ( y + 1 ) < G ( y ) < ln 1 y 2 3 + 1 + 1 2 3 y ( y + 1 ) ,
where the upper bound is valid for y > 2 3 and the lower bound is valid for y > 0 . Nantomah [9] studied Nielsen’s beta function, which is β ( y ) = G ( y ) 2 , and deduced the following symmetric inequalities:
1 2 y + 1 4 ( y + 1 ) 2 < 1 2 G ( y ) < 1 2 y + 1 2 y 2 , y > 0
and
1 y 2 < 1 2 G ( x ) < 1 2 y 2 , y > 0 .
In 2021, Mahmoud, Talat, Moustafa, and Agarwal [10] deduced an improvement for inequality (8) by:
1 2 y 2 + 1 < G ( y ) 1 y < 1 2 y 2 , y > 0
which also improves the lower and the upper bounds of inequality (11) for y 0 , . In 2022, Mahmoud and Almuashi [11] presented the inequality:
0 < G ( y ) + 1 3 y 3 ln 1 + 1 y + 1 2 y ( y + 1 ) < 3 2 y 4 , y > 0 .
A function S defined on an interval J is said to be completely monotonic (CM) if it has derivatives S ( i ) ( y ) for every i N { 0 } such that
( 1 ) i S ( i ) ( y ) 0 , y J ; i N { 0 } .
The following condition [12]:
S ( y ) = 0 e y u d μ ( u ) , 0 < y <
where μ ( u ) is a non-negative measure on [ 0 , ) , such that the integral is convergent for 0 < y < , is necessary and sufficient for the function S ( y ) to be CM. Let S ( y ) be a CM function for y > 0 and suppose the notation S ( ) = lim y S ( y ) . If y ε [ S ( y ) S ( ) ] is a CM function for y > 0 if and only if ε 0 , δ , then the number δ R + is called the CM degree of S ( y ) for y > 0 and denoted by d e g C M y [ S ( y ) ] = δ . For more information about this topic, see [13,14,15,16,17,18,19,20].
In this paper, we will introduce some CM functions involving G ( y ) and ψ ( y ) . As a consequence, we deduce some new symmetric bounds for the Bateman’s G-function and its derivatives. These relations refine the inequalities (10), and (12)–(14).
The following corollary [19] will be useful in the next part:
Corollary 1.
Suppose that T is a real-valued function defined on ( y 0 , ) , y 0 R and lim y T ( y ) = 0 . Then, for r R + , T ( y ) < 0 , if T ( y ) < T ( y + r ) for all y > y 0 and T ( y ) > 0 , if T ( y ) > T ( y + r ) for all y > y 0 .

2. Auxiliary Results

Lemma 1.
Suppose that
α = 15 + 2 57 , δ = 6 31 α + α 3 12 0.0884 and c = ( 57 7 ) α 6 0.503 .
Then, we have
ψ ( y + c ) < ln ( y δ ) + 1 2 α 1 2 3 y ( y + 1 ) + ln 1 + 1 y 2 3 , y > 2 3
ψ ( y c ) < ln ( y + δ 1 ) 1 2 α ln 1 + 1 y + 2 3 + 1 + 2 3 y ( y + 1 ) , y 9.2
ψ ( y + c ) < ln ( y δ ) + 1 2 α 1 y + 1 2 y 2 , y 0.1
and
ψ ( y c ) < ln ( y + δ 1 ) 1 2 α ln 1 + 1 y + 1 + 2 y ( y + 1 ) 1 3 y 3 y 3.5 .
Proof. 
Firstly, we suppose that
L ( y ) = 2 α ψ ( y + c ) ln ( y δ ) 1 2 3 y ( y + 1 ) ln 1 + 1 y 2 3
and we use the functional relation (2) to obtain
L ( 1 + y ) L ( y ) = l ( y ) 9 y 2 ( y + 1 ) 2 ( 2 + y ) 2 ( 6 6 + 3 y ) ( 3 6 + 3 y ) ( 6 + 3 y ) ( y δ + 1 ) ( y δ ) ( y + c ) 2 ,
where
l ( y ) = 8 119 49 6 + 21 38 17 57 + 9 120 6 + 21 5 57 α y 7 4 [ 1218 + 504 6 216 38 + 174 57 + ( 663 + 85 57 + 273 6 105 38 ) α ] y 12 [ 1076 + 427 6 129 38 + 110 57 + ( 1023 + 145 57 + 420 6 180 38 ) α ] y 2 6 [ 3912 + 1484 6 204 38 + 204 57 + ( 3414 + 550 57 + 1257 6 645 38 ) α ] y 3 36 [ 671 + 205 6 12 38 + 17 57 + 450 + 85 57 + 115 6 85 38 α ] y 4 18 [ 621 17 6 3 38 + 9 57 + 387 + 85 57 + 24 6 60 38 α ] y 5 + 9 [ 194 + 360 6 2 57 + ( 189 45 57 + 19 6 + 15 38 ) α ] y 6 > 0 , y > 0 .
Then, L ( 1 + y ) < L ( y ) for y > 2 3 , and by using the asymptotic Formula (3), we obtain lim y L ( y ) = 0 . By using Corollary 1, we obtain that L ( y ) > 0 for all y > 2 3 ; hence, L ( y ) is increasing on 2 3 , with lim y L ( y ) = 0 . Then, L ( y ) < 0 for all y 2 3 , , and this gives (16). Secondly, we write M ( y ) = 2 α ψ ( y c ) ln ( y + δ 1 ) ln 1 + 1 y + 2 3 1 + 2 3 y ( y + 1 ) and then
M ( 1 + y ) M ( y ) = w y 9.2 9 y 2 ( y + 1 ) 2 ( y + δ ) ( y + δ 1 ) ( y c ) 2 ( 6 + 6 + 3 x ) ( 3 + 6 + 3 y ) ( 6 + 3 y ) ( 2 + y ) 2 ,
where
78125 w ( y ) = 8 [ 26151619787463 α + 5 ( 3882587994557 15525870154997 6 15129123915 38 52826589311 57 + ( 1215011554153 57 + 76652769507 6 + 347969850045 38 ) α ) ] 20 [ 6954198232047 α + 5 ( 915850188594 4571027369148 6 2828108700 38 11845995102 57 + ( 325284476657 57 + 29096648769 6 + 80175624015 38 ) α ) ] y 300 [ 132141971037 α + 5 ( 14978811620 95903537753 6 35167125 38 184460210 57 + 6216917347 57 + 661244295 6 + 1280195325 38 α ) ] y 2 3750 [ 1674854718 α + 5 ( 156521904 1338475132 6 261780 38 1838292 57 + 79172758 57 + 8906559 6 + 13054365 38 α ) ] y 3 112500 [ 5310588 α + 5 ( 382648 4660362 6 405 38 4294 57 + 251953 57 + 26818 6 + 31130 38 α ) ] y 4 56250 [ 606663 α + 5 ( 29877 582997 6 15 38 321 57 + ( 28853 57 + 2502 6 + 2370 38 ) α ) ] y 5 140625 [ 7707 α + 5 ( 194 8088 6 2 57 + 367 57 + 19 6 + 15 38 α ) ] y 6 + 703125 120 6 + 21 5 57 α y 7 > 0 , y [ 0 , ) .
Then, M ( 1 + y ) > M ( y ) for y 9.2 and lim y M ( y ) = 0 . Then, in the same way, we have M ( y ) < 0 for all y 9.2 ; hence, M ( y ) is strictly decreasing on 9.2 , with lim x M ( y ) = 0 and then M ( y ) > 0 for all y 9.2 , , and this gives (17). Thirdly, we suppose that N ( y ) = 2 α ψ ( y + c ) ln ( y δ ) 1 y 1 2 y 2 and then
N ( 1 + y ) N ( y ) = H y 1 10 54 y 3 ( y + 1 ) 3 ( y δ + 1 ) ( y δ ) ( y + c ) 2 ,
where
5000 H ( y ) = 28401 α + 5 21251 + 2924 + 731 α 57 + 20 19212 α + 5 4600 + 526 + 497 α 57 y + 200 5685 + 330 57 + 5583 + 740 57 α y 2 + 2000 880 + 10 57 + 582 + 85 57 α y 3 + 10 4 21 α + 5 27 + 57 α y 4 < 0 , y 0 .
Then, N ( y + 1 ) < N ( y ) for y 0.1 and lim y N ( y ) = 0 . Then, N ( y ) > 0 for all y 0.1 ; hence, N ( y ) is increasing on 0.1 , with lim y N ( y ) = 0 . Then, N ( y ) < 0 for all y 0.1 , and this gives (18). Finally, we set U ( y ) = 2 α ψ ( y c ) ln ( y + δ 1 ) ln 1 + 1 y + 1 2 y ( y + 1 ) + 1 3 y 3 and then
U ( 1 + y ) U ( y ) = A y 3.5 54 y 4 ( y + 1 ) 4 ( y + 2 ) 2 ( y + 3 ) ( y + δ ) ( y + δ 1 ) ( y c ) 2 ,
where
256 A ( y ) = 81602651354 + 248146684 57 + 1182278433 2171283485 57 α 2 95218106718 220170408 57 + 1312734369 + 2236674425 57 α ] y 48 4114280651 7019278 57 + 53973180 + 84353100 57 α ] y 2 96 1243570661 1513678 57 + 15935862 + 22018780 57 α ] y 3 96 482731332 402816 57 + 6323583 + 7308835 57 α ] y 4 64 187105772 101692 57 + 2639937 + 2400365 57 α ] y 5 256 8043111 2646 57 + 127950 + 86710 57 α ] y 6 1536 147859 26 57 + 2736 + 1330 57 α ] y 7 256 56942 4 57 + 1245 + 425 57 α ] y 8 512 810 + 21 + 5 57 α ] y 9 > 0 , y [ 0 , ) .
Then, U ( 1 + y ) > U ( y ) for y 3.5 and lim y U ( y ) = 0 . Then, U ( y ) < 0 for all y 3.5 . Hence, U ( y ) is strictly decreasing on 3.5 , with lim x U ( y ) = 0 , and then U ( y ) > 0 for all y 3.5 , ; this gives (19). □
Lemma 2.
For the values of α , δ , and c in (15), we have
ψ ( y c ) > 1 y + δ 1 + 1 2 α y 2 y 2.5
and
ψ ( y + c ) > 1 y δ 1 α y 2 y 0.85 .
Proof. 
Letting V ( y ) = 2 α ψ ( y c ) 1 y + δ 1 + 1 y 2 and using (2), we have
V ( 1 + y ) V ( y ) = v ( y 2.5 ) 54 y 2 ( y + 1 ) 2 ( δ + y ) ( y + δ 1 ) ( y c ) 2 ,
where
8 v ( y ) = 47253 96 57 + 3870 + 600 57 α + 432 30 + α y 3 1296 y 4 + 4 19654 8 57 + 1527 + 110 57 α y + 8 6021 + 363 + 10 57 α y 2 < 0 , y 0 .
Then, V ( y + 1 ) > V ( y ) for y 2.5 and lim y V ( y ) = 0 . By using Corollary 1, we deduce that V ( y ) < 0 for all y 2.5 , and this gives (20). Next, assuming that K ( y ) = α ψ ( y + c ) 1 y δ + 1 y 2 and then
K ( y + 1 ) K ( y ) = k ( y 0.85 ) 54 y 2 ( y + 1 ) 2 ( y δ + 1 ) ( y δ ) ( c + y ) 2 ,
where
16 ( 10 5 ) k ( y ) = 9 18799911 + 960000 57 + 13305220 + 2040000 57 α + 100 3922171 + 64000 57 + 2339232 + 352000 57 α y + 4000 115695 + 36852 + 4000 57 α y 2 2160000 193 + 32 α y 3 7200000 39 + 4 α y 4 86400000 y 5 < 0 , y 0 , .
Then, K ( y + 1 ) < K ( y ) for y 0.85 , and lim y K ( y ) = 0 . In the same way, we have K ( y ) > 0 for all y 0.85 , and this gives (21). □

3. Some CM Functions Involving G ( y ) and ψ ( y )

In 2010, Mortici [21] presented a Lemma, which is considered as a powerful tool to construct asymptotic expansions and to measure the rate of convergence. This Lemma has been applied successfully to produce several approximations and inequalities in several papers such as [8]. We used this Lemma in producing the best approximations of Bateman’s G-function in terms of the digamma and logarithmic functions. Now, we will prove the complete monotonicity of some functions involving the function G ( y ) depending on this approximation.
Theorem 1.
For the values of α , δ , and c in (15) and β R + , we have that the function
W δ , α , β ( y ) = 2 α ψ ( y + β + δ ) ln y G ( δ + y )
is CM on ( 0 , ) if and only if β c with 0 d e g C M y W δ , α , c ( y ) < 1 . Also, the function W 1 δ , α , β ( y ) is CM on ( 0 , ) if and only if β c with 0 d e g C M y W 1 δ , α , β ( y ) < 1
Proof. 
Using (1), (4), and the identity (see [1]) ln f d = 0 e d t e f t t d t , f , d > 0 , we have
W δ , α , β ( y ) = 0 2 e y t t ( e t 1 ) ( e t + 1 ) φ ( t ) d t ,
where
φ ( t ) = α e 2 t 1 e ( 2 δ ) t e ( 1 δ ) t + α e ( 2 δ β ) t + e ( 1 δ β ) t t .
Set β c ; then, we obtain
φ ( t ) h = 21 f h t h + 1 ( h + 1 ) ! + P ( t ) ,
where
P ( t ) = α 27 ( 5 ! ) 21 + 5 57 t 5 + 2 9 ( 6 ! ) 8 + 21 + 5 57 α t 6 + 1 27 ( 7 ! ) 336 + 1367 + 231 57 α t 7 8 243 ( 8 ! ) 26 9 + 7 57 + 9657 1449 57 α t 8 + 4 81 ( 9 ! ) 4644 1092 57 + 19245 + 2852 57 α t 9 + 8 81 ( 10 ! ) 4947 α + 5 2519 + 473 + 206 α 57 t 10 1 2187 ( 11 ! ) 6745464 + 1294920 57 + 16658275 + 2016443 57 α t 11 4 2187 ( 12 ! ) 1061082 + 391738 57 + 19431345 + 2466321 57 α t 12 1 6561 ( 13 ! ) 99490248 5977608 57 + 546719841 + 69577313 57 α t 13 2 19683 ( 14 ! ) 835791633 α + 7 96563992 + 9232752 + 14503047 α 57 t 14 + 2 19683 ( 15 ! ) 1589956133 α + 5 306610032 + 29439144 + 46020731 α 57 t 15 + 64 59049 ( 16 ! ) 154541715 + 8974589 57 + 863959089 + 118275108 57 α t 16 + 1 531441 ( 17 ! ) [ 1102134397287 α + 85 ( 1771598267 57 α 576 ( 2283069 + 594071 57 ) ) ] t 17 + 2 59049 ( 18 ! ) [ 40863209452 7099206900 57 + ( 47394762375 + 6806308343 57 ) α ] t 18 1 177147 ( 19 ! ) [ 1035579247861 α + 57 ( 9234069080 + 1596142440 + 2292009741 α 57 ) ] t 19 4 4782969 ( 20 ! ) [ 1876198637070 + 547139251390 57 + 32385689139321 + 4199481091305 57 α ] t 20 4 4782969 ( 21 ! ) [ 14020285258098 1240835687826 57 + ( 66540894078516 + 8629702072789 57 ) α ] t 21 > 0 , t > 0
and
f h = 2 h + 1 α ( h + 1 ) 2 δ h 1 δ h + α 2 δ c h + 1 δ c h ,
which leads to
f h > 2 h + 1 α ( h + 1 ) 2 δ h + α 2 δ c h + 1 δ c h .
Then,
f h ( h + 1 ) 2 δ h > 2 α m h 1 α 2 δ c 2 δ h + 1 δ c 2 δ h ,
where m h = 1 + δ 2 δ h h + 1 is increasing for h 21 because
m h + 1 m h = δ 1 + δ 2 δ h ( h + 1 ) ( h + 2 ) ( 2 δ ) h 2 ( 1 δ ) δ > 0 , h 21 .
Also, α 2 δ c 2 δ h + 1 δ c 2 δ h is increasing for h 21 and, consequently, for h 21 we obtain
f h ( h + 1 ) 2 δ h > α 1 + δ 2 δ 21 11 1 α 1 c 2 δ 21 + 1 δ c 2 δ 21 0.279 > 0 .
We thus obtain that W δ , α , β ( y ) is CM on ( 0 , ) for β c . On the contrary, if W δ , α , β ( y ) is CM on y > 0 , then we have for y > 0 :
y W δ , α , β ( y ) = 2 α y ψ ( y + δ + β ) ln y y G ( δ + y ) > 0 .
Using the asymptotic Formula (7), we have lim y y G ( y + δ ) = 1 , and by using the asymptotic Formula (3), we have lim y y ψ ( y + δ + β ) ln y = δ + β 1 2 . From (22), we conclude that 1 + 2 α δ + β 1 2 0 and then β c . Using the asymptotic Formulas (3) and (7), we have W δ , α , c ( ) = lim y W δ , α , c ( y ) = 0 . Now,
y W δ , α , c ( y ) = 0 2 e y t Ω ( t ) t 2 ( e 2 t 1 ) 2 d t ,
where
Ω ( t ) = α e 2 t 1 2 + [ ( 2 δ ) e ( 2 δ ) t ( 1 δ ) e ( 1 δ ) t ( 1 + δ ) e ( 3 δ ) t + δ e ( 4 δ ) t
+ α ( 1 δ c ) e ( 1 δ c ) t + ( 2 δ c ) e ( 2 δ c ) t + ( 1 + δ + c ) e ( 3 δ c ) t + ( δ + c ) e ( 4 δ c ) t ] t 2
with Ω ( 5 ) 5.56 ( 10 7 ) and Ω ( 6 ) 7.524 ( 10 9 ) . Then, y W δ , α , c ( y ) is not CM function; hence, d e g C M y [ W δ , α , c ( y ) ] < 1 . Now, for β c , we have W 1 δ , α , β ( y ) = 0 2 e y t t ( e t 1 ) ( e t + 1 ) ϕ ( t ) d t , where
ϕ ( t ) α 1 e 2 t + e ( 1 + δ ) t + e δ t + α e ( δ + c + 1 ) t + e ( δ + c ) t t = α 21 5 57 t 5 3240 + h = 5 F h t h + 1 ( h + 1 ) ! < h = 5 F h t h + 1 ( h + 1 ) ! ,
where
F h = 2 h + 1 α + ( h + 1 ) ( 1 + δ ) h + δ h + α ( δ + c + 1 ) h + ( δ + c ) h ,
which leads to
F h < 2 h + 1 α + ( h + 1 ) δ h + α ( h + 1 ) ( δ + c + 1 ) h + ( δ + c ) h .
Then,
F h ( h + 1 ) ( δ + c + 1 ) h < 2 α n h + δ δ + c + 1 h + α 1 + δ + c δ + c + 1 h ,
where n h = 2 δ + c + 1 h h + 1 is decreasing for h 3 because
n h + 1 n h = ( 1 δ c ) 2 δ + c + 1 h ( h + 1 ) ( h + 2 ) ( δ + c + 1 ) h 2 ( δ + c ) ( 1 δ c ) < 0 , h 3 .
Also, δ δ + c + 1 h and δ + c δ + c + 1 h are decreasing for h 5 and, consequently, for h 5 , we obtain
F h ( h + 1 ) ( δ + c + 1 ) h < α 2 δ + c + 1 5 3 + δ δ + c + 1 5 + α 1 + δ + c δ + c + 1 5 0.213 < 0 .
Then, W 1 δ , α , β ( y ) is CM on ( 0 , ) for β c . Conversely, if W 1 δ , α , β ( y ) is CM, then we obtain for y > 0 :
y W 1 δ , α , β ( y ) = y G ( y δ + 1 ) 2 α y ψ ( y + 1 δ β ) ln y < 0 .
In the same way, we have lim y y G ( y δ + 1 ) = 1 and lim y y ψ ( y + 1 δ β ) ln y = ( δ + β ) + 1 2 . From (23), we conclude that 1 + 2 α δ + β 1 2 0 ; hence, β c . Now,
y W 1 δ , α , c ( y ) = 0 2 e y t Λ ( t ) t 2 ( e 2 t 1 ) 2 d t ,
where
Λ ( t ) = α e 2 t 1 2 + [ ( 2 δ ) e ( 2 + δ ) t ( 1 + δ ) e ( 1 + δ ) t ( 1 δ ) e ( 3 + δ ) t + δ e δ t + α ( 1 + δ + c ) e ( 1 + δ + c ) t + ( 2 δ c ) e ( 2 + δ + c ) t + ( 1 δ c ) e ( 3 + δ + c ) t + ( δ + c ) e ( δ + c ) t ] t 2
with Λ ( 7.8 ) 3.55 ( 10 12 ) and Λ ( 8 ) 5.39 ( 10 12 ) . Then, y W 1 δ , α , c ( y ) is not a CM function; hence, d e g C M y [ W 1 δ , α , c ( y ) ] < 1 .

4. Sharp Symmetric Bounds for Bateman’s G -Function

Let us mention two important consequences of Theorem 1.
Corollary 2.
For the values of α , δ , and c in (15) and θ R + , we have
2 α ψ ( y θ ) ln ( y + δ 1 ) < G ( y ) < 2 α ψ ( y + θ ) ln ( y δ )
with the best constant θ = c , where the upper bound is valid for y > δ and the other bound is valid for y > 1 δ .
Proof. 
From W 1 δ , α , c ( y + δ 1 ) < 0 for y > 1 δ and W δ , α , c ( y δ ) > 0 for y > δ in Theorem 1, we obtain (24) at θ = c . The two sides of inequality (24) are equivalent to y W 1 δ , α , θ ( y + δ 1 ) < 0 and y W δ , α , θ ( y δ ) > 0 and, in the same way they were used in proving Theorem 1, we have θ c and θ c consecutively. Since ψ ( y ) is increasing on ( 0 , ) , then ψ y c ψ y θ for θ c and ψ y + c ψ y + θ for θ c . Hence, θ = c is the best in (24). □
Remark 1.
  • Using (16) and (17) yields the upper and the lower bounds of inequality (24), which refines their counterparts of (10) for all y > 2 3 and y 9.2 consecutively.
  • Using (18) yields the upper bound of inequality (24), which refines its counterpart of (13) for all y 0.1 .
  • Using (19) yields the lower bound of the inequality (24), which refines its counterpart of (14) for all y 3.5 . And the upper bound of inequality (24) refines its counterpart of (14) for all 0.0884 < y 22.6 .
Corollary 3.
For the values of α , δ , and c in (15), θ R + and h N , we have
2 α ( 1 ) h ψ ( h ) ( y θ ) + ( h 1 ) ! ( y + δ 1 ) h < ( 1 ) h G ( h ) ( y ) < 2 α ( 1 ) h ψ ( h ) ( y + θ ) + ( h 1 ) ! ( y δ ) h
with the best constant θ = c , where the upper bound is valid for y > δ and the other bound is valid for y > 1 δ .
Proof. 
The left-hand side of inequality (25) is deduced from ( 1 ) h + 1 W 1 δ , α , θ ( h ) ( y + δ 1 ) > 0 for y > 1 δ . Then,
lim y y h + 1 ( 1 ) h + 1 W 1 δ , α , θ ( h ) ( y 1 + δ ) = 2 α lim y y h + 1 ( 1 ) h ψ ( h ) ( y θ ) + ( h 1 ) ! ( y + δ 1 ) h + ( 1 ) h lim y y h + 1 G ( h ) ( y ) 0 .
Using the asymptotic (7), we have lim y ( 1 ) h y h + 1 G ( h ) ( y ) = h ! , and by using the asymptotic (3), we have
lim y y h + 1 ( 1 ) h ψ ( h ) ( y θ ) + ( h 1 ) ! ( y + δ 1 ) h = h ! 1 2 ( δ + θ ) .
From (4), we conclude that h ! 1 + 2 α 1 2 ( δ + θ ) 0 and then θ c . The other side of inequality (25) is deduced from ( 1 ) h + 1 W δ , α , θ ( h ) ( y δ ) > 0 for y > δ . Then,
y h + 1 ( 1 ) h W δ , α , θ ( h ) ( y δ ) = ( 1 ) h + 1 y h + 1 G ( h ) ( y ) + 2 α y h + 1 ( 1 ) h ψ ( h ) ( y + θ ) + ( h 1 ) ! ( y δ ) h > 0
and in the same way, we obtain θ c . Since ψ ( y ) is a strictly completely monotonic function on ( 0 , ) , then ( 1 ) h ψ ( h ) ( y ) are increasing on ( 0 , ) for h = 0 , 1 , 2 , , and then θ = c is the best constant in (25). □
Remark 2.
Using Lemma 2, we deduce that the upper and the lower bounds inequality (25) at h = 1 refines their counterparts of (12) for all y 2.5 and y 0.85 consecutively.

5. Conclusions

We have deduced some new symmetric bounds for Bateman’s G-function and its derivatives in terms of the digamma and polygamma functions, which are mentioned in (24) and (25). These results improve the results presented by Hegazi, Mahmoud, Talat, and Moustafa; Nantomah, Mahmoud, Talat, Moustafa, and Agarwal; and Mahmoud and Almuashi, which are mentioned in (10) and (12)–(14).

Author Contributions

Writing—original draft, H.M. and W.A.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables; Dover: New York, NY, USA, 1965. [Google Scholar]
  2. Bateman, H.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G.; Bertin, D.; Fulks, W.B.; Harvey, A.R.; Thomsen, D.L., Jr.; Weber, M.A.; Whitney, E.L.; et al. Higher Transcendental Functions; California Institute of Technology—Bateman Manuscript Project, 1953–1955; McGraw-Hill Inc.: New York, NY, USA, 1953; reprinted by Krieger Inc.: Malabar, FL, USA, 1981; Volume 1–3. [Google Scholar]
  3. Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
  4. Oldham, K.; Myland, J.; Spanier, J. An Atlas of Functions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
  5. Qiu, S.-L.; Vuorinen, M. Some properties of the gamma and psi functions with applications. Math. Comp. 2005, 74, 723–742. [Google Scholar] [CrossRef]
  6. Mahmoud, M.; Agarwal, R.P. Bounds for Bateman’s G-function and its applications. Georgian Math. J. 2016, 23, 579–586. [Google Scholar]
  7. Mahmoud, M.; Talat, A.; Moustafa, H. Some approximations of the Bateman’s G-function. J. Comput. Anal. Appl. 2017, 23, 1165–1178. [Google Scholar]
  8. Hegazi, A.; Mahmoud, M.; Talat, A.; Moustafa, H. Some best approximation formulas and inequalities for the Bateman’s G-function. J. Comput. Anal. Appl. 2019, 27, 118–135. [Google Scholar]
  9. Nantomah, K. New Inequalities for Nielsen’s Beta Function. Commun. Math. Appl. 2019, 10, 773–781. [Google Scholar] [CrossRef]
  10. Mahmoud, M.; Talat, A.; Moustafa, H.; Agarwal, R.P. Completely monotonic functions involving Bateman’s G-function. J. Comput. Anal. Appl. 2021, 29, 970–986. [Google Scholar]
  11. Mahmoud, M.; Almuashi, H. Two Approximation Formulas for Bateman’s G-functionwith Bounded Monotonic Errors. Mathematics 2022, 10, 4787. [Google Scholar] [CrossRef]
  12. Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
  13. Mahmoud, M.; Qi, F. Bounds for completely monotonic degrees of remainders in asymptotic expansions of the digamma function. Math. Inequalities Appl. 2022, 25, 291–306. [Google Scholar] [CrossRef]
  14. Burić, T.; Elezović, N. Some completely monotonic functions related to the psi function. Math. Inequalities Appl. 2011, 14, 679–691. [Google Scholar] [CrossRef]
  15. Qi, F. Completely monotonic degree of a function involving trigamma and tetragamma functions. AIMS Math. 2020, 5, 3391–3407. [Google Scholar] [CrossRef]
  16. Qi, F.; Agarwal, R.P. On complete monotonicity for several classes of functions related to ratios of gamma functions. J. Inequal. Appl. 2019, 36, 42. [Google Scholar] [CrossRef]
  17. Qi, F.; Li, W.-H. Integral representations and properties of some functions involving the logarithmic function. Filomat 2016, 30, 1659–1674. [Google Scholar] [CrossRef]
  18. Qi, F.; Wang, S.-H. Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions. Glob. J. Math. Anal. 2014, 2, 91–97. [Google Scholar] [CrossRef]
  19. Qi, F.; Guo, S.; Guo, B.-N. Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 2010, 233, 2149–2160. [Google Scholar] [CrossRef]
  20. Zhu, L. Completely monotonic integer degrees for a class of special functions. AIMS Math. 2020, 5, 3456–3471. [Google Scholar] [CrossRef]
  21. Mortici, C. New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 2010, 23, 97–100. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Moustafa, H.; Al Sayed, W. Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function. Symmetry 2025, 17, 563. https://doi.org/10.3390/sym17040563

AMA Style

Moustafa H, Al Sayed W. Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function. Symmetry. 2025; 17(4):563. https://doi.org/10.3390/sym17040563

Chicago/Turabian Style

Moustafa, Hesham, and Waad Al Sayed. 2025. "Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function" Symmetry 17, no. 4: 563. https://doi.org/10.3390/sym17040563

APA Style

Moustafa, H., & Al Sayed, W. (2025). Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function. Symmetry, 17(4), 563. https://doi.org/10.3390/sym17040563

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop