The Generalized Euler Method for Analyzing Zoonotic Disease Dynamics in Baboon–Human Populations
Abstract
:1. Introduction
2. Baboon and Human Population Model Description
3. Foundational Concepts
- (1)
- is Lebesgue measurable in t on ,
- (2)
- is continuous in Z on ,
- (3)
- There exists a function such that:
- (4)
- There is a function such that:
- (1)
- is Lebesgue measurable with respect to t on ,
- (2)
- is continuous in Z on ,
- (3)
- The partial derivative is continuous on ,
- (4)
- There exist constants and such that:
4. Existence, Uniqueness, and Positivity of Solution
5. Equilibrium Points and Stability
6. Utilization of the Extended Euler Approach
6.1. Numerical Experiments
- Baseline Dynamics: Without any control interventions, the infected baboon () and infected human () populations exhibited sustained growth, leading to persistent zoonotic disease transmission. The basic reproduction number remained above 1, indicating an endemic situation.
- Effect of Sterilization (): Increasing the sterilization rate of baboons significantly reduced the susceptible baboon population (), thereby lowering the overall infection rate. However, sterilization alone was not sufficient to eliminate the disease entirely, as transmission still occurred through infected individuals.
- Effect of Food Access Restriction (): Limiting food availability for baboons decreased human–baboon interactions, leading to a decline in transmission. The simulations showed that moderate values of contributed to a substantial reduction in both and , making this an effective intervention strategy.
- Effect of Reducing Human–Baboon Interaction (): Implementing measures such as public awareness campaigns and habitat modifications reduces direct contact between baboons and humans. The simulations revealed that increasing led to a significant decline in , confirming that minimizing interaction is one of the most effective strategies for controlling zoonotic disease spread.
- Combined Control Strategies: The most effective disease mitigation was achieved when sterilization, food restriction, and interaction reduction were applied simultaneously. In such cases, the model predicted that dropped below 1, leading to disease eradication over time.
6.2. Error Estimation
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef]
- Al-Aklabi, A.; Al-Khulaidi, A.W.; Hussain, A.; Al-Sagheer, N. Main vegetation types and plant species diversity along an altitudinal gradient of Al Baha region, Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 2000, 287, 443–449. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of major human infectious diseases. Nature 2007, 447, 279–283. [Google Scholar] [CrossRef]
- Kock, R.A.; Wamwayi, H.; Rossiter, P.; Libeau, G.; Wambwa, E. Re-infection of wildlife populations with rinderpest virus on the periphery of the Somali ecosystem in East Africa. Prev. Vet. Med. 2006, 75, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Drewe, J.A.; O’Riain, M.J.; Beamish, E.; Currie, H.; Parsons, S. Survey of infections transmissible between baboons and humans, Cape Town, South Africa. Emerg. Infect. Dis. 2012, 18, 298–301. [Google Scholar] [CrossRef]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Huo, J.; Zhao, H.; Zhu, L. The effect of vaccines on backward bifurcation in a order HIV model. Nonlinear Anal. Real World Appl. 2015, 26, 289–305. [Google Scholar] [CrossRef]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar]
- Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D. Nonlinear Noninteger Order Circuits and Systems; World Scientific: Singapore, 2000. [Google Scholar]
- Nisar, K.S.; Farman, M.; Abdel-Aty, M.; Ravichandran, C. A review of fractional-order models for plant epidemiology. Progr. Fract. Differ. Appl. 2024, 10, 489–521. [Google Scholar]
- Ahmed, E.; Elgazzar, A.S. On fractional order differential equations model for nonlocal epidemics. Phys. A Stat. Mech. Its Appl. 2007, 379, 607–614. [Google Scholar]
- Li, W.; Wang, Y.; Cao, J.; Abdel-Aty, M. Dynamics and backward bifurcations of SEI tuberculosis models in homogeneous and heterogeneous populations. J. Math. Anal. Appl. 2025, 543, 128924. [Google Scholar]
- Nisar, K.S.; Farman, M.; Abdel-Aty, M.; Ravichandran, C. A review of fractional order epidemic models for life sciences problems: Past, present and future. Alex. Eng. J. 2024, 95, 283–305. [Google Scholar]
- Bagley, R.L.; Calico, R.A. Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 1991, 14, 304–311. [Google Scholar]
- Heaviside, O. Electromagnetic Theory; Chelsea: New York, NY, USA, 1971. [Google Scholar]
- Kusnezov, D.; Bulgac, A.; Dang, G.D. Quantum levy processes and fractional kinetics. Phys. Rev. Lett. 1999, 82, 1136. [Google Scholar]
- Hammad, H.A.; Qasymeh, M.; Abdel-Aty, M. Existence and stability results for a Langevin system with Caputo–Hadamard fractional operators. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2450218. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Alsulami, A.; Alharb, R.A.; Albogami, T.M.; Eljaneid, N.H.; Adam, H.D.; Saber, S.F. Controlled chaos of a fractal–fractional Newton-Leipnik system. Therm. Sci. 2024, 28, 5153–5160. [Google Scholar]
- Yan, T.; Alhazmi, M.; Youssif, M.Y.; Elhag, A.E.; Aljohani, A.F.; Saber, S. Analysis of a Lorenz Model Using Adomian Decomposition and Fractal-Fractional Operators. Therm. Sci. 2024, 28, 5001–5009. [Google Scholar]
- Alhazmi, M.; Dawalbait, F.M.; Aljohani, A.; Taha, K.O.; Adam, H.D.; Saber, S. Numerical approximation method and Chaos for a chaotic system in sense of Caputo-Fabrizio operator. Therm. Sci. 2024, 28, 5161–5168. [Google Scholar]
- Sayed Saber, Safa Mirgani, Analyzing fractional glucose-insulin dynamics using Laplace residual power series methods via the Caputo operator: Stability and chaotic behavior. Beni-Suef Univ. J. Basic Appl. Sci. 2025, 14, 28. [CrossRef]
- Ahmed, K.I.; Adam, H.D.; Youssif, M.Y.; Saber, S. Different strategies for diabetes by mathematical modeling: Applications of fractal-fractional derivatives in the sense of Atangana-Baleanu. Results Phys. 2023, 52, 106892. [Google Scholar]
- Ahmed, K.I.; Adam, H.D.; Youssif, M.Y.; Saber, S. Different strategies for diabetes by mathematical modeling: Modified Minimal Model. Alex. Eng. J. 2023, 80, 74–87. [Google Scholar]
- Ahmed, K.I.A.; Mirgani, S.M.; Seadawy, A.; Saber, S. A comprehensive investigation of fractional glucose-insulin dynamics: Existence, stability, and numerical comparisons using residual power series and generalized Runge-Kutta methods. J. Taibah Univ. Sci. 2025, 19, 2460280. [Google Scholar]
- Saber, S.; Mirgani, S.M. Numerical Analysis and Stability of a Fractional Glucose-Insulin Regulatory System Using the Laplace Residual Power Series Method Incorporating the Atangana-Baleanu Derivative. Int. J. Model. Simul. Sci. Comput. 2025. [Google Scholar] [CrossRef]
- Alhazmi, M.; Saber, S. Glucose-insulin regulatory system: Chaos control and stability analysis via Atangana–Baleanu fractal-fractional derivatives. Alex. Eng. J. 2025, 122, 77–90. [Google Scholar]
- Saber, S.; Solouma, E.; Alharb, R.A.; Alalyani, A. Chaos in Fractional-Order Glucose–Insulin Models with Variable Derivatives: Insights from the Laplace–Adomian Decomposition Method and Generalized Euler Techniques. Fractal Fract. 2025, 9, 149. [Google Scholar] [CrossRef]
- Althubyani, M.; Saber, S. Hyers–Ulam Stability of Fractal–Fractional Computer Virus Models with the Atangana–Baleanu Operator. Fractal Fract. 2025, 9, 158. [Google Scholar] [CrossRef]
- Khan, H.; Alzabut, J.; Shah, A.; Etemad, S.; Rezapour, S.; Park, C. A study on the fractal-fractional tobacco smoking model. AIMS Math. 2022, 7, 13887–13909. [Google Scholar] [CrossRef]
- Khan, H.; Alzabut, J.; Tunç, O.; Kaabar, M.K. A fractal–fractional COVID-19 model with a negative impact of quarantine on the diabetic patients. Results Control Optim. 2023, 10, 100199. [Google Scholar]
- Almutairi, N.; Saber, S.; Ahmad, H. The fractal-fractional Atangana-Baleanu operator for pneumonia disease: Stability, statistical and numerical analyses. AIMS Math. 2023, 8, 29382–29410. [Google Scholar]
- Evirgen, F.; Uçar, E.; Uçar, S.; Özdemir, N. Modelling Influenza A disease dynamics under Caputo-Fabrizio fractional derivative with distinct contact rates. Math. Model. Numer. Simul. Appl. 2023, 3, 58–73. [Google Scholar]
- Ozdemir, N.; Uçar, E.; Avcı, D. Dynamic analysis of a fractional svir system modeling an infectious disease. Facta Univ. Ser. Math. Inform. 2022, 37, 605–619. [Google Scholar]
- Olumide, O.O.; Othman, W.A.M.; Özdemir, N. Efficient Solution of Fractional-Order SIR Epidemic Model of Childhood Diseases With Optimal Homotopy Asymptotic Method. IEEE Access 2022, 10, 9395–9405. [Google Scholar]
- Özdemir, N.; Uçar, E. Investigating of an immune system-cancer mathematical model with Mittag-Leffler kernel. AIMS Math. 2020, 5, 1519–1531. [Google Scholar] [CrossRef]
- Li, X.P.; Ullah, S.; Zahir, H.; Alshehri, A.; Riaz, M.B.; Al Alwan, B. Modeling the dynamics of coronavirus with super-spreader class: A fractal-fractional approach. Results Phys. 2022, 34, 105179. [Google Scholar]
- Alzubaidi, A.M.; Othman, H.A.; Ullah, S.; Ahmad, N.; Alam, M.M. Analysis of Monkeypox viral infection with human to animal transmission via a fractional and Fractal-fractional operators with power law kernel. Math. Biosci. Eng. 2023, 20, 6666–6690. [Google Scholar]
- Li, S.; Ullah, S.; Khan, I.U.; AlQahtani, S.A.; Riaz, M.B. A robust computational study for assessing the dynamics and control of emerging zoonotic viral infection with a case study: A novel epidemic modeling approach. AIP Adv. 2024, 14, 015051. [Google Scholar]
- Li, S.; Samreen, U.S.; Riaz, M.B.; Awwad, F.A.; Teklu, S.W. Global dynamics and computational modeling approach for analyzing and controlling of alcohol addiction using a novel fractional and fractal–fractional modeling approach. Sci. Rep. 2024, 14, 5065. [Google Scholar]
- Hussain, A. Invariant analysis and equivalence transformations for the non-linear wave equation in elasticity. Partial Differ. Equ. Appl. Math. 2025, 13, 101123. [Google Scholar]
- Usman, M.; Hussain, A.; Zidan, A.M. Dynamics of closed-form invariant solutions and formal Lagrangian approach to a nonlinear model generated by the Jaulent–Miodek hierarchy. Z. Naturforschung 2025, 80. [Google Scholar] [CrossRef]
- Usman, M.; Hussain, A.; Abd El-Rahman, M.; Herrera, J. Group theoretic approach to (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Alex. Eng. J. 2025, 118, 449–465. [Google Scholar]
- Zhao, Y.; Xu, C.; Xu, Y.; Lin, J.; Pang, Y.; Liu, Z.; Shen, J. Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay. AIMS Math. 2024, 9, 29883–29915. [Google Scholar]
- Pal, A.K. Anindita Bhattacharyya, Srishti Pal, Study of delay induced eco-epidemiological model incorporating a prey refuge. Filomat 2022, 36, 557–578. [Google Scholar]
- Sadek, L.; Baleanu, D.; Abdo, M.S.; Shatanawi, W. Introducing novel Θ-fractional operators: Advances in fractional calculus. J. King Saud-Univ.-Sci. 2024, 36, 103352. [Google Scholar]
- Sadek, L. A cotangent fractional derivative with the application. Fractal Fract. 2023, 7, 444. [Google Scholar] [CrossRef]
- Sadek, L.; Lazar, T.A. On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Math. 2023, 8, 28334–28352. [Google Scholar]
- Sadek, L.; Sadek, O.; Alaoui, H.T.; Abdo, M.S.; Shah, K.; Abdeljawad, T. Fractional order modeling of predicting COVID-19 with isolation and vaccination strategies in Morocco. CMES-Comput. Model. Eng. Sci. 2023, 136, 1931–1950. [Google Scholar]
- Sadek, O.; Sadek, L.; Touhtouh, S.; Hajjaji, A. The mathematical fractional modeling of TiO2 nanopowder synthesis by sol–gel method at low temperature. Math. Model. Comput. 2022, 9, 616–626. [Google Scholar]
- Odibat, Z.M.; Momani, S. An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inform. 2008, 26, 15–27. [Google Scholar]
- Odibat, Z.; Momani, S. Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 2008, 36, 167–174. [Google Scholar] [CrossRef]
- Abbasbandy, S. Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method. Appl. Math. Comput. 2006, 172, 485–490. [Google Scholar] [CrossRef]
- Khan, N.A.; Ara, A.; Jamil, M. An efficient approach for solving the Riccati equation with fractional orders. Comput. Math. Appl. 2011, 61, 2683–2689. [Google Scholar] [CrossRef]
- Aminkhah, H.; Hemmatnezhad, M. An efficient method for quadratic Riccati differential equation. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 835–839. [Google Scholar] [CrossRef]
- Cang, J.; Tan, Y.; Xu, H.; Liao, S.J. Series solutions of non-linear Riccati differential equations with fractional order. Chaos Solitons Fractals 2009, 40, 1–9. [Google Scholar] [CrossRef]
- Tan, Y.; Abbasbandy, S. Homotopy analysis method for quadratic Riccati differential equation. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 539–546. [Google Scholar]
- Gulsu, M.; Sezer, M. On the solution of the Riccati equation by the Taylor matrix method. Appl. Math. Comput. 2006, 176, 414–421. [Google Scholar] [CrossRef]
- Odibat, Z.; Shawagfeh, N. Generalized Taylor’s formula. Appl. Math. Comput. 2007, 186, 286–293. [Google Scholar] [CrossRef]
- Dehda, B.; Yazid, F.; Djeradi, F.S.; Zennir, K.; Bouhali, K.; Radwan, T. Solving fractional Riccati differential equations. Numerical Approach Based on the Haar Wavelet Collocation Method for Solving a Coupled System with the Caputo–Fabrizio Fractional Derivative. Symmetry 2024, 16, 713. [Google Scholar] [CrossRef]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; El Zowalaty, M.E.; Rahman, A.T.; Ashour, H.M. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020, 8, 1405. [Google Scholar]
- Joseph, E. Mathematical Analysis of Prevention and Control Strategies of Pneumonia in Adults and Children. Master’s Dissertation, University of Dar ES Salaam, Dar es Salaam, Tanzania, 2012. [Google Scholar]
- Ayelet, G.; Yigezu, L.; Gelaye, E.; Tariku, S.; Asmare, K. Epidemiologic and serologic investigation of multifactorial respiratory disease of sheep in the central highland of Ethiopia. Int. J. Appl. Res. Vet. Med. 2004, 2, 275–278. [Google Scholar]
- Baker, R.L.; Gray, G.D. Appropriate breeds and breeding schemes for sheep and goats in the tropics. Worm Control Small Ruminants Trop. Asia 2004, 113, 63–69. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Daftardar-Gejji, V.; Jafari, H. Analysis of a system of non autonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 2007, 328, 1026–1033. [Google Scholar]
- Lin, W. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 2007, 332, 709–726. [Google Scholar]
- Li, H.L.; Zhang, L.; Hu, C.; Jiang, Y.L.; Teng, Z. Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J. Appl. Math. Comput. 2017, 54, 435–449. [Google Scholar] [CrossRef]
- CVargas-De-León, C. Volterra-type LFs for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 75–85. [Google Scholar]
- Choi, S.K.; Kang, B.; Koo, N. Stability for Caputo fractional differential systems. Abstr. Appl. Anal. 2014, 2014, 631419. [Google Scholar]
- Boukhouima, A.; Hattaf, K.; Yousfi, N. Dynamics of a fractional order HIV infection model with specific functional response and cure rate. Int. J. Differ. Equ. 2017, 2017, 8372140. [Google Scholar]
- Hefferman, J.; Smith, R.; Wahl, L. Perspectives on the basic reproduction ratio. J. R. Soc. Interface 2005, 2, 281–293. [Google Scholar]
- LaSalle, J.P. Some extensions of Liapunov’s second method. IRE Trans. Circuit Theory 1960, 7, 520–527. [Google Scholar] [CrossRef]
- LaSalle, J.P. The Stability of Dynamics Systems; SIAM: Philadelphia, PA, USA, 1976; Volume 50. [Google Scholar]
- Al-Ghamdi, G.; Alzahrani, A.; Al-Ghamdi, S.; Alghamdi, S.; Al-Ghamdi, A.; Alzahrani, W.; Zinner, D. Potential Hotspots of Hamadryas Baboon–Human Conflict in Al-Baha Region, Saudi Arabia. Diversity 2023, 15, 1107. [Google Scholar] [CrossRef]
Parameter | Value | Source |
---|---|---|
0.3 | Estimated | |
0.1 | Estimated | |
0.07 | Estimated | |
0.15 | Estimated | |
0.1 | Assumed | |
0.05 | Assumed | |
0.05 | Assumed | |
r | 0.05 | Assumed |
K | 3000 | Estimated |
0.01 | Estimated |
h | ||||
---|---|---|---|---|
−1.230587514160928 | 1.904959580936555 | 0.751972948680281 | 0.785531902054452 | |
−1.061110242113278 | 1.940190794821020 | 0.415109454355213 | 0.879128933122776 | |
−1.015855771334397 | 1.961017182073904 | 0.219682130799205 | 0.933763944099137 | |
−1.004063271904520 | 1.972167801697337 | 0.113429154201297 | 0.962477934907692 | |
−1.001034400255673 | 1.977926785981624 | 0.057806699720829 | 0.977150215826183 | |
−1.000262432420641 | 1.980853052009642 | 0.029262661073358 | 0.984573990764699 | |
−1.000066464983257 | 0.014762798186914 | |||
−1.000016818587168 | 0.007434930967961 |
h | ||||
---|---|---|---|---|
−2.326508213491328 | 1.067858535219673 | 2.063882999678037 | 3.578639814091108 | |
−1.647800735475855 | 1.006794709692697 | 1.992390832959806 | 0.463370460207230 | |
−1.324039249963567 | 0.992944397031469 | 1.986406985255091 | 0.118777817473332 | |
−1.162919129852769 | 0.990829292631269 | 1.990747009184933 | 0.699165428640857 | |
−1.081964120101717 | 0.991036225398347 | 1.994744030260617 | 0.865555010973675 | |
−1.041228494373794 | 0.991461358994093 | 1.997205909082042 | 0.932675206008964 | |
−1.020733737952112 | 0.991752429070755 | 1.998557074903865 | ||
−1.010425530442698 | 1.999264931751799 |
h | ||||
---|---|---|---|---|
−0.810858602235998 | 1.134148250045712 | 17.710724336596417 | 0.919794628750672 | |
−0.910831556058634 | 1.051723457397754 | 18.810610778750505 | 0.955734196405311 | |
−0.956379615764291 | 1.020129659296684 | 19.391993440099736 | 0.973775158693165 | |
−0.978351614908976 | 1.005880122139417 | 19.691742213503858 | 0.982881681370900 | |
−0.989185393271114 | 0.998981951425179 | 19.844365880125473 | 0.987471151984859 | |
−0.994580249280774 | 0.995555981083686 | 19.921588585883410 | 0.989778019827995 | |
−0.997279581417658 | 19.960536712925116 | |||
−0.998633411352176 | 19.980149246718597 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saber, S.; Solouma, E. The Generalized Euler Method for Analyzing Zoonotic Disease Dynamics in Baboon–Human Populations. Symmetry 2025, 17, 541. https://doi.org/10.3390/sym17040541
Saber S, Solouma E. The Generalized Euler Method for Analyzing Zoonotic Disease Dynamics in Baboon–Human Populations. Symmetry. 2025; 17(4):541. https://doi.org/10.3390/sym17040541
Chicago/Turabian StyleSaber, Sayed, and Emad Solouma. 2025. "The Generalized Euler Method for Analyzing Zoonotic Disease Dynamics in Baboon–Human Populations" Symmetry 17, no. 4: 541. https://doi.org/10.3390/sym17040541
APA StyleSaber, S., & Solouma, E. (2025). The Generalized Euler Method for Analyzing Zoonotic Disease Dynamics in Baboon–Human Populations. Symmetry, 17(4), 541. https://doi.org/10.3390/sym17040541