On the Secant Non-Defectivity of Integral Hypersurfaces of Projective Spaces of at Most Five Dimensions
Abstract
:1. Introduction
- Either with ;
- Or .
Tools Used Here and Elsewhere Related to Horace
2. Preliminaries and Notation
3. Proof of Theorem 2 for
- (a)
- Assume and .
- (b)
- Assume and .
- (c)
- Assume and .
- (d)
- Assume and .
- (e)
- Assume and .
4. Proof of Theorem 2 for
5. Proof of Theorem 2 for
6. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernardi, A.; Carlini, E.; Catalisano, M.V.; Gimigliano, A.; Oneto, A. The Hitchhiker guide to: Secant varieties and tensor decomposition. Mathematics 2018, 6, 314. [Google Scholar] [CrossRef]
- Landsberg, J.M. Tensors: Geometry and Applications; American Mathematical Society: Providence, RI, USA, 2012. [Google Scholar]
- Ådlandsvik, B. Joins and higher secant varieties. Math. Scand. 1987, 61, 213–222. [Google Scholar] [CrossRef]
- Alexander, J.; Hirschowitz, A. Un lemme d’Horace différentiel: Application aux singularité hyperquartiques de P5. J. Algebr. Geom. 1992, 1, 411–426. [Google Scholar]
- Alexander, J.; Hirschowitz, A. La méthode d’Horace éclaté: Application à l’interpolation en degré quatre. Invent. Math. 1992, 107, 585–602. [Google Scholar] [CrossRef]
- Alexander, J.; Hirschowitz, A. Polynomial interpolation in several variables. J. Algebr. Geom. 1995, 4, 201–222. [Google Scholar]
- Alexander, J.; Hirschowitz, A. An asymptotic vanishing theorem for generic unions of multiple points. Invent. Math. 2000, 140, 303–325. [Google Scholar] [CrossRef]
- Chandler, K. A brief proof of a maximal rank theorem for generic 2-points in projective space. Trans. Am. Math. Soc. 2000, 353, 1907–1920. [Google Scholar] [CrossRef]
- Chandler, K. Linear systems of cubics singular at general points of projective space. Compos. Math. 2002, 134, 269–282. [Google Scholar] [CrossRef]
- Brambilla, M.C.; Ottaviani, G. On the Alexander-Hirschowitz Theorem. J. Pure Appl. Algebra 2008, 212, 1229–1251. [Google Scholar] [CrossRef]
- Postinghel, E. A new proof of the Alexander-Hirschowitz interpolation theorem. Ann. Mat. Pura Appl. 2012, 191, 77–94. [Google Scholar] [CrossRef]
- Buczyński, J.; Landsberg, J.M. Ranks of tensors and a generalization of secant varieties. Linear Algebra Appl. 2013, 438, 668–689. [Google Scholar] [CrossRef]
- Buczyńska, W.; Buczyński, J. Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes. J. Algebr. Geom. 2014, 23, 63–90. [Google Scholar] [CrossRef]
- Bernardi, A.; Brachat, J.; Mourrain, B. A comparison of different notions of ranks of symmetric tensors. Linear Algebra Appl. 2014, 460, 205–230. [Google Scholar] [CrossRef]
- Bernardi, A.; Jelisiejew, J.; Marques, P.M.; Ranestad, K. On polynomials with given Hilbert function and applications. Collect. Math. 2018, 69, 39–64. [Google Scholar] [CrossRef]
- Buczyńsk, J.; Jelisiejew, J. Finite schemes and secant varieties over arbitrary characteristic. Differ. Geom. Appl. 2017, 55, 13–67. [Google Scholar] [CrossRef]
- Bernardi, A.; Taufer, D. Waring, tangential and cactus decompositions. J. Math. Pures Appl. 2020, 143, 1–30. [Google Scholar] [CrossRef]
- Bernardi, A.; Oneto, A.; Taufer, D. On schemes evinced by generalized additive decompositions. J. Math. Pures Appl. 2024, 188, 446–469. [Google Scholar] [CrossRef]
- Massarenti, A.; Mella, M. Bronowski’s conjecture and the identifiability of projective varieties. Duke Math. J. 2024, 173, 3293–3316. [Google Scholar] [CrossRef]
- Ballico, E. On the non-defectivity of Segre-Veronese embeddings. Math. Z. 2024, 308, 6. [Google Scholar] [CrossRef]
- Abo, H.; Brambilla, M.C.; Galuppi, F.; Oneto, A. Non-defectivity of Segre-Veronese varieties. Proc. Am. Math. Soc. Ser. B 2024, 11, 589–602. [Google Scholar] [CrossRef]
- Blomenhofer, A.T.; Casarotti, A. Nondefectivity of invariant secant varieties. arXiv 2023, arXiv:2312.12335v2. [Google Scholar]
- Chiantini, L.; Ottaviani, G.; Vanniuwenhoven, N. On identifiability of symmetric tensors of subgeneric rank. Trans. Am. Math. Soc. 2017, 369, 4021–4042. [Google Scholar] [CrossRef]
- Galuppi, F.; Oneto, A. Secant non-defectivity via collisions of fat points. Adv. Math. 2022, 409, 108657. [Google Scholar] [CrossRef]
- Laface, A.; Postinghel, E. Secant varieties of Segre-Veronese embeddings of (1)r. Math. Ann. 2013, 356, 1455–1470. [Google Scholar] [CrossRef]
- Abo, H.; Ottaviani, G.; Peterson, C. Induction for secant varieties of Segre varieties. Trans. Am. Math. Soc. 2009, 361, 767–792. [Google Scholar] [CrossRef]
- Abo, H. On non-defectivity of certain Segre-Veronese varieties. J. Symb. Comput. 2010, 45, 1254–1269. [Google Scholar] [CrossRef]
- Abo, H.; Brambilla, M.C. Secant varieties of Segre-Veronese varieties m × n embedded by (1,2). Exp. Math. 2009, 18, 369–384. [Google Scholar] [CrossRef]
- Abo, H.; Brambilla, M.C. New examples of defective secant varieties of Segre-Veronese varieties. Collect. Math. 2012, 63, 287–297. [Google Scholar] [CrossRef]
- Abo, H.; Brambilla, M.C. On the dimensions of secant varieties of Segre-Veronese varieties. Ann. Mat. Pura Appl. 2013, 192, 61–92. [Google Scholar] [CrossRef]
- Ballico, E. On the defectivity of the complete embeddings of a smooth 3-dimensional quadric. Adv. Geom. 2012, 12, 501–508. [Google Scholar] [CrossRef]
- Laface, A. On linear systems of curves on rational scrolls. Geom. Dedicata 2002, 90, 127–144. [Google Scholar] [CrossRef]
- Chiantini, L.; Ciliberto, C. Weakly defective varieties. Trans. Am. Math. Soc. 2002, 454, 151–178. [Google Scholar] [CrossRef]
- Ciliberto, C.; Miranda, R. Interpolations on curvilinear schemes. J. Algebra 1998, 203, 677–678. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballico, E. On the Secant Non-Defectivity of Integral Hypersurfaces of Projective Spaces of at Most Five Dimensions. Symmetry 2025, 17, 454. https://doi.org/10.3390/sym17030454
Ballico E. On the Secant Non-Defectivity of Integral Hypersurfaces of Projective Spaces of at Most Five Dimensions. Symmetry. 2025; 17(3):454. https://doi.org/10.3390/sym17030454
Chicago/Turabian StyleBallico, Edoardo. 2025. "On the Secant Non-Defectivity of Integral Hypersurfaces of Projective Spaces of at Most Five Dimensions" Symmetry 17, no. 3: 454. https://doi.org/10.3390/sym17030454
APA StyleBallico, E. (2025). On the Secant Non-Defectivity of Integral Hypersurfaces of Projective Spaces of at Most Five Dimensions. Symmetry, 17(3), 454. https://doi.org/10.3390/sym17030454