Loss of Exponential Stability for a Delayed Timoshenko System Symmetrically in Both Viscoelasticity and Fractional Boundary Controls
Abstract
1. Introduction and Statement of the Problem
2. Preliminary and Augmented System
3. Lack of Exponential Stability When
4. Polynomial Stability When
5. Conclusions
- When , we found a lack of exponential stability decay rate;
- When , we found a polynomial decay rate.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munoz Rivera, J.E.; Racke, R. Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 2008, 341, 1068–1083. [Google Scholar] [CrossRef]
- Freitas, P.; Zuazua, E. Stability results for the wave equation with indefinite damping. J. Diff. Equ. 1996, 132, 338–353. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Z.; Rao, B. Exponential stability of an abstract nondissipative linear system. SIAM J. Control Optim. 2001, 40, 149–165. [Google Scholar] [CrossRef]
- Benaddi, A.; Rao, B. Energy decay rate of wave equations with indefinite damping. J. Diff. Equ. 2000, 161, 337–357. [Google Scholar] [CrossRef]
- Mustafa, M.I. Viscoelastic Timoshenko beams with variable-exponent nonlinearity. J. Math. Anal. Appl. 2022, 516, 126520. [Google Scholar] [CrossRef]
- Sabrine, C.; Makram, H. Discrete energy behavior of a damped Timoshenko system. Comp. Appl. Math. 2020, 39, 4. [Google Scholar] [CrossRef]
- Zhang, H.-E.; Xu, G.-Q.; Chen, H. Stability of a viscoelastic Timoshenko system with non-monotonic kernel. Appl. Anal. 2022, 102, 2692–2723. [Google Scholar] [CrossRef]
- Mizhidon, A.D.; Barguev, S.G.; Dabaeva, M.Z. Free Vibrations of Two-Span Timoshenko Beams with Adjoint Oscillator. Syst. Anal. Model. 2013, 4, 34–38. [Google Scholar]
- Braik, A.; Mirgani, S.M.; Hassan, E.I.; Zennir, K. Well-Posedness and Energy Decay Rates for a Timoshenko-Type System with Internal Time-Varying Delay in the Displacement. Symmetry 2023, 15, 1878. [Google Scholar] [CrossRef]
- Yesilce, Y.; Demirdag, O.; Catal, S. Free Vibrations of a Multi-Span Timoshenko Beam Carrying Multiple Spring-Mass Systems. Sadhana 2008, 33, 385–401. [Google Scholar] [CrossRef]
- Dridi, H.; Zennir, K. Well-posedness and energy decay for some thermoelastic systems of Timoshenko type with Kelvin–Voigt damping. SeMA J. 2021, 78, 385–400. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Tsai, Y.-K. Nonlinear vibrations of Timoshenko pipes conveying fluid. Int. J. Solids Struct. 1997, 34, 2945–2956. [Google Scholar] [CrossRef]
- Paidoussis, P.M.; Lu, T.P.; Laithier, B.E. Dynamics of finite-length tubular beams conveying fluid. J. Sound Vibr. 1986, 106, 311–331. [Google Scholar] [CrossRef]
- Nematollahi, M.S.; Mohammadi, H.; Taghvaei, S. Fluttering and divergence instability of functionally graded viscoelastic nanotubes conveying fluid based on nonlocal strain gradient theory. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 033108. [Google Scholar] [CrossRef]
- Choi, J.U.; Maccamy, R.C. Fractional order Volterra equations with applications to elasticity. J. Math. Anal. Appl. 1989, 139, 448–464. [Google Scholar] [CrossRef]
- Mbodje, B. Wave energy decay under fractional derivative controls. IMA J. Math. Contr. Infor. 2006, 23, 237–257. [Google Scholar] [CrossRef]
- Benaissa, A.; Gaouar, S. Stability result of the Lame’ system with a delay term in the internal fractional feedback. Acta Univ. Sapientiae Math. 2021, 13, 336–355. [Google Scholar] [CrossRef]
- Dridi, D.; Feng, B.; Zennir, K. Stability of the Timoshenko system coupled with the thermal law of Gurtin-Pipkin affecting shear force. Appl. Anal. 2021, 101, 5171–5192. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadoun, M.B.; Cherif, A.B.; Bentifour, R.; Bouhali, K.; Biomy, M.; Zennir, K. Loss of Exponential Stability for a Delayed Timoshenko System Symmetrically in Both Viscoelasticity and Fractional Boundary Controls. Symmetry 2025, 17, 423. https://doi.org/10.3390/sym17030423
Sadoun MB, Cherif AB, Bentifour R, Bouhali K, Biomy M, Zennir K. Loss of Exponential Stability for a Delayed Timoshenko System Symmetrically in Both Viscoelasticity and Fractional Boundary Controls. Symmetry. 2025; 17(3):423. https://doi.org/10.3390/sym17030423
Chicago/Turabian StyleSadoun, Mokhtaria Bouariba, Amine Benaissa Cherif, Rachid Bentifour, Keltoum Bouhali, Mohamed Biomy, and Khaled Zennir. 2025. "Loss of Exponential Stability for a Delayed Timoshenko System Symmetrically in Both Viscoelasticity and Fractional Boundary Controls" Symmetry 17, no. 3: 423. https://doi.org/10.3390/sym17030423
APA StyleSadoun, M. B., Cherif, A. B., Bentifour, R., Bouhali, K., Biomy, M., & Zennir, K. (2025). Loss of Exponential Stability for a Delayed Timoshenko System Symmetrically in Both Viscoelasticity and Fractional Boundary Controls. Symmetry, 17(3), 423. https://doi.org/10.3390/sym17030423