The Space of Continuous Linear Functionals on ℓ1 Approximated by Weakly Symmetric Continuous Linear Functionals
Abstract
1. Introduction
2. Definitions and Preliminaries
3. Weakly Symmetric Continuous Linear Functionals on
4. Functionals That Can Be Approximated by Weakly Symmetric Functionals
5. Construction of a Schauder Basis of
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aron, R.M.; Cole, B.J.; Gamelin, T.W. Spectra of algebras of analytic functions on a Banach space. J. Reine Angew. Math. 1991, 415, 51–93. [Google Scholar]
- Aron, R.M.; Galindo, P.; Garcia, D.; Maestre, M. Regularity and algebras of analytic functions in infinite dimensions. Trans. Am. Math. Soc. 1996, 348, 543–559. [Google Scholar] [CrossRef]
- Carando, D.; Dimant, V.; Rodríguez, J.T. Homomorphisms on algebras of analytic functions on non-symmetrically regular spaces. Math. Z. 2023, 304, 17. [Google Scholar] [CrossRef]
- Halushchak, S. Spectra of Some Algebras of Entire Functions of Bounded Type, Generated by a Sequence of Polynomials. Carpathian Math. Publ. 2019, 11, 311–320. [Google Scholar] [CrossRef]
- Vasylyshyn, S. Spectra of Algebras of Analytic Functions, Generated by Sequences of Polynomials on Banach Spaces, and Operations on Spectra. Carpathian Math. Publ. 2023, 15, 104–119. [Google Scholar] [CrossRef]
- Baziv, N.; Zagorodnyuk, A. Analytic Invariants of Semidirect Products of Symmetric Groups on Banach Spaces. Symmetry 2023, 15, 2117. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Symmetric analytic functions on the Cartesian power of the complex Banach space of Lebesgue measurable essentially bounded functions on [0,1]. J. Math. Anal. Appl. 2022, 509, 125977. [Google Scholar] [CrossRef]
- Nemirovskii, A.; Semenov, S. On polynomial approximation of functions on Hilbert space. Mat. USSR-Sb. 1973, 21, 255–277. [Google Scholar] [CrossRef]
- González, M.; Gonzalo, R.; Jaramillo, J.A. Symmetric polynomials on rearrangement-invariant function spaces. J. Lond. Math. Soc. 1999, 59, 681–697. [Google Scholar] [CrossRef]
- Aron, R.; Galindo, P.; Pinasco, D.; Zalduendo, I. Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. 2016, 48, 779–796. [Google Scholar] [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. On the spectrum of the algebra of bounded-type symmetric analytic functions on l1. Math. Nachr. 2024, 297, 3835–3846. [Google Scholar] [CrossRef]
- Falcó, J.; García, D.; Jung, M.; Maestre, M. Group-invariant separating polynomials on a Banach space. Publ. Mat. 2022, 66, 207–233. [Google Scholar] [CrossRef]
- Boumova, S.; Drensky, V.; Dzhundrekov, D.; Kasabov, M. Symmetric polynomials in free associative algebras. Turk. J. Math. 2022, 46, 1674–1690. [Google Scholar] [CrossRef]
- Rosas, M. MacMahon symmetric functions, the partition lattice, and Young subgroups. J. Comb. Theory Ser. A 2001, 96, 326–340. [Google Scholar] [CrossRef]
- Kravtsiv, V. Block-supersymmetric polynomials on spaces of absolutely convergent series. Symmetry 2024, 16, 179. [Google Scholar] [CrossRef]
- Kravtsiv, V.; Vitrykus, D. Generating Elements of the Algebra of Block-Symmetric Polynomials on the Product of Banach Spaces Cs. AIP Conf. Proc. 2022, 2483, 030010. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Isomorphisms of algebras of symmetric functions on spaces ℓp. Mat. Stud. 2025, 63. to appear. [Google Scholar]
- Balantekin, A.B. Partition functions in statistical mechanics, symmetric functions, and group representation. Phys. Rev. E 2001, 64, 066105/1–066105/8. [Google Scholar] [CrossRef]
- Chernega, I.; Martsinkiv, M.; Vasylyshyn, T.; Zagorodnyuk, A. Applications of Supersymmetric Polynomials in Statistical Quantum Physics. Quantum Rep. 2023, 5, 683–697. [Google Scholar] [CrossRef]
- Pain, J.-C.; Gilleron, F.; Porcherot, Q. Generating functions for canonical systems of fermions. Phys. Rev. E 2011, 83, 067701. [Google Scholar] [CrossRef]
- Schmidt, H.J.; Schnack, J. Investigations on finite ideal quantum gases. Phys. A Stat. Mech. Its Appl. 1998, 260, 479–489. [Google Scholar] [CrossRef]
- Schmidt, H.-J.; Schnack, J. Partition functions and symmetric polynomials. Am. J. Phys. 2002, 70, 53–57. [Google Scholar] [CrossRef]
- Dineen, S. Complex Analysis on Infinite Dimensional Spaces; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Mujica, J. Complex Analysis in Banach Spaces; North-Holland: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1986. [Google Scholar]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces, Vol. I, Sequence Spaces; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasylyshyn, T.; Zagorodnyuk, A. The Space of Continuous Linear Functionals on ℓ1 Approximated by Weakly Symmetric Continuous Linear Functionals. Symmetry 2025, 17, 206. https://doi.org/10.3390/sym17020206
Vasylyshyn T, Zagorodnyuk A. The Space of Continuous Linear Functionals on ℓ1 Approximated by Weakly Symmetric Continuous Linear Functionals. Symmetry. 2025; 17(2):206. https://doi.org/10.3390/sym17020206
Chicago/Turabian StyleVasylyshyn, Taras, and Andriy Zagorodnyuk. 2025. "The Space of Continuous Linear Functionals on ℓ1 Approximated by Weakly Symmetric Continuous Linear Functionals" Symmetry 17, no. 2: 206. https://doi.org/10.3390/sym17020206
APA StyleVasylyshyn, T., & Zagorodnyuk, A. (2025). The Space of Continuous Linear Functionals on ℓ1 Approximated by Weakly Symmetric Continuous Linear Functionals. Symmetry, 17(2), 206. https://doi.org/10.3390/sym17020206