The Space of Continuous Linear Functionals on ℓ1 Approximated by Weakly Symmetric Continuous Linear Functionals
Abstract
:1. Introduction
2. Definitions and Preliminaries
3. Weakly Symmetric Continuous Linear Functionals on
4. Functionals That Can Be Approximated by Weakly Symmetric Functionals
5. Construction of a Schauder Basis of
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aron, R.M.; Cole, B.J.; Gamelin, T.W. Spectra of algebras of analytic functions on a Banach space. J. Reine Angew. Math. 1991, 415, 51–93. [Google Scholar]
- Aron, R.M.; Galindo, P.; Garcia, D.; Maestre, M. Regularity and algebras of analytic functions in infinite dimensions. Trans. Am. Math. Soc. 1996, 348, 543–559. [Google Scholar] [CrossRef]
- Carando, D.; Dimant, V.; Rodríguez, J.T. Homomorphisms on algebras of analytic functions on non-symmetrically regular spaces. Math. Z. 2023, 304, 17. [Google Scholar] [CrossRef]
- Halushchak, S. Spectra of Some Algebras of Entire Functions of Bounded Type, Generated by a Sequence of Polynomials. Carpathian Math. Publ. 2019, 11, 311–320. [Google Scholar] [CrossRef]
- Vasylyshyn, S. Spectra of Algebras of Analytic Functions, Generated by Sequences of Polynomials on Banach Spaces, and Operations on Spectra. Carpathian Math. Publ. 2023, 15, 104–119. [Google Scholar] [CrossRef]
- Baziv, N.; Zagorodnyuk, A. Analytic Invariants of Semidirect Products of Symmetric Groups on Banach Spaces. Symmetry 2023, 15, 2117. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Symmetric analytic functions on the Cartesian power of the complex Banach space of Lebesgue measurable essentially bounded functions on [0,1]. J. Math. Anal. Appl. 2022, 509, 125977. [Google Scholar] [CrossRef]
- Nemirovskii, A.; Semenov, S. On polynomial approximation of functions on Hilbert space. Mat. USSR-Sb. 1973, 21, 255–277. [Google Scholar] [CrossRef]
- González, M.; Gonzalo, R.; Jaramillo, J.A. Symmetric polynomials on rearrangement-invariant function spaces. J. Lond. Math. Soc. 1999, 59, 681–697. [Google Scholar] [CrossRef]
- Aron, R.; Galindo, P.; Pinasco, D.; Zalduendo, I. Group-symmetric holomorphic functions on a Banach space. Bull. Lond. Math. Soc. 2016, 48, 779–796. [Google Scholar] [CrossRef]
- Chernega, I.; Galindo, P.; Zagorodnyuk, A. On the spectrum of the algebra of bounded-type symmetric analytic functions on l1. Math. Nachr. 2024, 297, 3835–3846. [Google Scholar] [CrossRef]
- Falcó, J.; García, D.; Jung, M.; Maestre, M. Group-invariant separating polynomials on a Banach space. Publ. Mat. 2022, 66, 207–233. [Google Scholar] [CrossRef]
- Boumova, S.; Drensky, V.; Dzhundrekov, D.; Kasabov, M. Symmetric polynomials in free associative algebras. Turk. J. Math. 2022, 46, 1674–1690. [Google Scholar] [CrossRef]
- Rosas, M. MacMahon symmetric functions, the partition lattice, and Young subgroups. J. Comb. Theory Ser. A 2001, 96, 326–340. [Google Scholar] [CrossRef]
- Kravtsiv, V. Block-supersymmetric polynomials on spaces of absolutely convergent series. Symmetry 2024, 16, 179. [Google Scholar] [CrossRef]
- Kravtsiv, V.; Vitrykus, D. Generating Elements of the Algebra of Block-Symmetric Polynomials on the Product of Banach Spaces Cs. AIP Conf. Proc. 2022, 2483, 030010. [Google Scholar] [CrossRef]
- Vasylyshyn, T. Isomorphisms of algebras of symmetric functions on spaces ℓp. Mat. Stud. 2025, 63. to appear. [Google Scholar]
- Balantekin, A.B. Partition functions in statistical mechanics, symmetric functions, and group representation. Phys. Rev. E 2001, 64, 066105/1–066105/8. [Google Scholar] [CrossRef]
- Chernega, I.; Martsinkiv, M.; Vasylyshyn, T.; Zagorodnyuk, A. Applications of Supersymmetric Polynomials in Statistical Quantum Physics. Quantum Rep. 2023, 5, 683–697. [Google Scholar] [CrossRef]
- Pain, J.-C.; Gilleron, F.; Porcherot, Q. Generating functions for canonical systems of fermions. Phys. Rev. E 2011, 83, 067701. [Google Scholar] [CrossRef]
- Schmidt, H.J.; Schnack, J. Investigations on finite ideal quantum gases. Phys. A Stat. Mech. Its Appl. 1998, 260, 479–489. [Google Scholar] [CrossRef]
- Schmidt, H.-J.; Schnack, J. Partition functions and symmetric polynomials. Am. J. Phys. 2002, 70, 53–57. [Google Scholar] [CrossRef]
- Dineen, S. Complex Analysis on Infinite Dimensional Spaces; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Mujica, J. Complex Analysis in Banach Spaces; North-Holland: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1986. [Google Scholar]
- Lindenstrauss, J.; Tzafriri, L. Classical Banach Spaces, Vol. I, Sequence Spaces; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasylyshyn, T.; Zagorodnyuk, A. The Space of Continuous Linear Functionals on ℓ1 Approximated by Weakly Symmetric Continuous Linear Functionals. Symmetry 2025, 17, 206. https://doi.org/10.3390/sym17020206
Vasylyshyn T, Zagorodnyuk A. The Space of Continuous Linear Functionals on ℓ1 Approximated by Weakly Symmetric Continuous Linear Functionals. Symmetry. 2025; 17(2):206. https://doi.org/10.3390/sym17020206
Chicago/Turabian StyleVasylyshyn, Taras, and Andriy Zagorodnyuk. 2025. "The Space of Continuous Linear Functionals on ℓ1 Approximated by Weakly Symmetric Continuous Linear Functionals" Symmetry 17, no. 2: 206. https://doi.org/10.3390/sym17020206
APA StyleVasylyshyn, T., & Zagorodnyuk, A. (2025). The Space of Continuous Linear Functionals on ℓ1 Approximated by Weakly Symmetric Continuous Linear Functionals. Symmetry, 17(2), 206. https://doi.org/10.3390/sym17020206