Fabry–Perot Spin Resonances in Rashba–Ferromagnet Hall Geometry Enabling Tunable Spin Currents
Abstract
1. Introduction
2. Model
2.1. Hamiltonian and Transport Theory
2.2. Mirror Symmetry and Chemical Potential
2.3. Short-Circuit Current and Open-Circuit Voltage
3. Results and Discussion
3.1. Diffusive Rashba Channel
3.2. Coherent Rashba Channel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, W.; Otani, Y.; Maekawa, S. Quantum materials for spin and charge conversion. NPJ Quantum Mater. 2018, 3, 27. [Google Scholar] [CrossRef]
- Hirohata, A.; Yamada, K.; Nakatani, Y.; Prejbeanu, I.L.; Diény, B.; Pirro, P.; Hillebrands, B. Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 2020, 509, 166711. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Rao, S.; Wostyn, K.; Petit-Watelot, S.; Gaury, B.; Kim, J.; Waintal, X.; Houssameddine, D.; Kent, A.D. Recent progress in spin–orbit torque magnetic random-access memory. npj Spintronics 2024, 2, 48. [Google Scholar] [CrossRef]
- Mou, H.; Zhang, Y.; Zhou, L.; Zhu, D.; Liu, Z.; Lu, H.; Han, X.; Guo, Y.; Luo, X. Spin logic devices based on negative differential resistance and beyond. Nano Res. 2024, 31, 1437–1448. [Google Scholar]
- Wang, L.; Wesselink, R.J.H.; Liu, Y.; Yuan, Z.; Xia, K.; Kelly, P.J. Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 2016, 116, 196602. [Google Scholar] [CrossRef]
- Amin, V.P.; Zemen, J.; Stiles, M.D. Interface-generated spin currents. Phys. Rev. Lett. 2018, 121, 136805. [Google Scholar] [CrossRef]
- Liu, L.; Pai, C.; Li, Y.; Tseng, H.W.; Ralph, D.C.; Buhrman, R.A. Spin-torque switching with the giant spin Hall effect of tantalum. Science 2012, 336, 555–558. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K. Emerging three-terminal magnetic memory devices. Proc. IEEE 2016, 104, 1831–1843. [Google Scholar] [CrossRef]
- Sinova, J.; Valenzuela, S.O.; Wunderlich, J.; Back, C.H.; Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 2015, 87, 1213–1260. [Google Scholar] [CrossRef]
- Edelstein, V.M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 1990, 73, 233–235. [Google Scholar] [CrossRef]
- Hosokawa, K.; Miwa, S.; Suzuki, Y. Theory of the inverse Rashba–Edelstein effect induced by thermal bias at FI/2DEG interfaces. Phys. Rev. B 2024, 110, 035309. [Google Scholar] [CrossRef]
- Hazra, B.; Pal, B.; Jeon, J.; Neumann, R.; Göbel, B.; Grover, B.; Deniz, H.; Styervoyedov, A.; Meyerheim, H.; Mertig, I.; et al. Generation of out-of-plane polarized spin current by spin swapping. Nat. Commun. 2023, 14, 4549. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Ko, H.; Go, G.; Oh, J.; Kim, K.; Lee, K. Spin swapping effect of band structure origin in centrosymmetric ferromagnets. Phys. Rev. Lett. 2022, 129, 037202. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Park, D.T.; Lee, S.; Kim, U.; Yang, C.; Kim, J.; Umansky, V.; Kim, D.; Sim, H.-S.; Chung, Y.; et al. Observation of electronic modes in open cavity resonator. Nat. Commun. 2023, 14, 415. [Google Scholar] [CrossRef]
- Tran, V.; Nguyen, V.; Charlier, J. Klein tunneling degradation and enhanced Fabry–Pérot interference in graphene/h-BN moiré-superlattice devices. 2D Mater. 2024, 11, 025023. [Google Scholar] [CrossRef]
- Ihnatsenka, S. Fabry–Pérot and Aharonov–Bohm interference in ideal graphene nanoribbons. Phys. Rev. B 2022, 106, 115408. [Google Scholar] [CrossRef]
- Young, A.F.; Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 2009, 5, 222–226. [Google Scholar] [CrossRef]
- Maciel, R.P.; Araújo, A.L.; Lewenkopf, C.H.; Ferreira, G.J. Fabry-Pérot resonant vortices and magnetoconductance in topological insulator constrictions with magnetic barriers. Phys. Rev. B 2021, 103, 205124. [Google Scholar] [CrossRef]
- Alomar, M.I.; Sánchez, D.S. Interplay between resonant tunneling and spin precession oscillations in all-electric, all-semiconductor spin transistors. Phys. Rev. B 2016, 94, 075402. [Google Scholar] [CrossRef]
- Qin, H.; Holländer, R.B.; Flajšman, L.; Hermann, F.; Dreyer, R.; Woltersdorf, G.; van Dijken, S. Nanoscale magnonic Fabry–Pérot resonator for low-loss spin-wave manipulation. Nat. Commun. 2021, 12, 2293. [Google Scholar] [CrossRef]
- Lutsenko, A.; Fripp, K.G.; Flajšman, L.; Shytov, A.V.; Kruglyak, V.V.; van Dijken, S. Magnonic Fabry–Pérot resonators as programmable phase shifters. Appl. Phys. Lett. 2025, 126, 082406. [Google Scholar] [CrossRef]
- Lipson, S.G.; Lipson, H.; Tannhauser, D.S. Optical Physics, 3rd ed.; Cambridge University Press: London, UK, 1995; p. 248. ISBN 0-521-06926-2. [Google Scholar]
- Kim, K.; Lee, K.; Sinova, J.; Lee, H.; Stiles, M.D. Spin–orbit torques from interfacial spin–orbit coupling for various interfaces. Phys. Rev. B 2017, 96, 104438. [Google Scholar] [CrossRef]
- Kim, K.; Lee, K. Generalized spin drift–diffusion formalism in the presence of spin–orbit interaction of ferromagnets. Phys. Rev. Lett. 2020, 125, 207205. [Google Scholar] [CrossRef]
- Inoue, J.; Bauer, G.E.W.; Molenkamp, L.W. Suppression of the persistent spin Hall current by defect scattering. Phys. Rev. B 2004, 70, 041303. [Google Scholar] [CrossRef]
- Krotkov, P.L.; Sarma, S.D. Intrinsic spin Hall conductivity in a generalized Rashba model. Phys. Rev. B 2006, 73, 195307. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, S.; Kim, T.; Lee, O.; Han, S.; Kim, H.; Koo, H.; Hong, J. Spin transport at a Pt/InAs quantum well interface using spin Hall and Rashba effects. Appl. Phys. Lett. 2020, 117, 042403. [Google Scholar] [CrossRef]
- Lee, W.; Kim, S.B.; Kim, K.; Lee, K.; Koo, H.C.; Choi, G. Direct observation of spin accumulation and spin-orbit torque driven by Rashba-Edelstein effect in an InAs quantum-well layer. Phys. Rev. B 2021, 104, 184412. [Google Scholar] [CrossRef]
- Alexander, C.; Sadiku, N. Fundamentals of Electric Circuits, 7th ed.; McGraw-Hill: New York, NY, USA, 2021; Chapter 3; pp. 137–143. ISBN 9781260226409. [Google Scholar]
- Rodina, A.; Alekseev, A.; Efros, A.; Rosen, M.; Meyer, B. General boundary conditions for the envelope function in the multiband kp model. Phys. Rev. B 2002, 65, 125302. [Google Scholar] [CrossRef]
- Sakurai, J.; Napolitano, J. Modern Quantum Mechanics, 2nd ed.; Addison–Wesley: San Francisco, CA, USA, 2011; Chapter 3, Section 3.4. [Google Scholar]
- Fabian, A.; Czerner, M.; Heiliger, C. Spin accumulation from nonequilibrium first principles methods. Phys. Rev. B 2021, 104, 054402. [Google Scholar] [CrossRef]
- Lundstrom, M. Fundamentals of Carrier Transport, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000; Chapter 3, Section 4; p. 134. [Google Scholar]
- Singh, J. Modern Physics for Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2008; Appendix B; p. 353. [Google Scholar]
- Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, UK, 1995; Chapter 2. [Google Scholar]
- Yang, J.; Shang, Y.; Liu, X.; Wang, Y.; Dong, X.; Zeng, Q.; Lyu, M.; Zhang, S.; Liu, Y.; Wang, B.; et al. Modulation of the anomalous Hall angle in a magnetic topological semimetal. Nat. Electron. 2025, 8, 386–393. [Google Scholar] [CrossRef]
- Garlid, E.S.; Hu, Q.O.; Chan, M.K.; Palmstrøm, C.J.; Crowell, P.A. Electrical measurement of the direct spin Hall effect in FeInxGa1-xAs heterostructures. Phys. Rev. Lett. 2010, 105, 156602. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Saitoh, E. Observation of the inverse spin Hall effect in silicon. Nat. Phys. 2012, 3, 629. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Cho, S.; Lee, O.; Hong, J.; Kwak, J.Y.; Han, S.; Jung, S.; Kim, Y.; Ko, H.; Lee, S.; et al. Field-like spin–or-bit torque induced by bulk Rashba channels in GeTe/NiFe bilayers. NPG Asia Mater. 2021, 13, 76. [Google Scholar] [CrossRef]
- Sahoo, R.C.; Duong, D.L.; Yoon, J.; Hai, P.N.; Lee, Y.H. Spin-orbit torque: Moving towards two-dimensional van der Waals heterostructures. arXiv 2018, arXiv:2108.10622v1. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.; Kim, S. Fabry–Perot Spin Resonances in Rashba–Ferromagnet Hall Geometry Enabling Tunable Spin Currents. Symmetry 2025, 17, 1991. https://doi.org/10.3390/sym17111991
Hong J, Kim S. Fabry–Perot Spin Resonances in Rashba–Ferromagnet Hall Geometry Enabling Tunable Spin Currents. Symmetry. 2025; 17(11):1991. https://doi.org/10.3390/sym17111991
Chicago/Turabian StyleHong, Jinki, and Sangsu Kim. 2025. "Fabry–Perot Spin Resonances in Rashba–Ferromagnet Hall Geometry Enabling Tunable Spin Currents" Symmetry 17, no. 11: 1991. https://doi.org/10.3390/sym17111991
APA StyleHong, J., & Kim, S. (2025). Fabry–Perot Spin Resonances in Rashba–Ferromagnet Hall Geometry Enabling Tunable Spin Currents. Symmetry, 17(11), 1991. https://doi.org/10.3390/sym17111991
