Insights into Inclined MHD Hybrid Nanofluid Flow over a Stretching Cylinder with Nonlinear Radiation and Heat Flux: A Symmetric Numerical Simulation
Abstract
1. Introduction
2. Physical Interpretation
3. Physical Quantities
4. Engineering Quantities
Numerical Methodology
5. Results and Discussion
6. Concluding Remarks
- 1.
- Velocity distribution is a decline with magnetic parameter as a function of () and Prandtl parameter.
- 2.
- The thermal profile, concentration distribution, and the motile profiles reduce near a stretching surface but increase as we move further away from the surface when the curvature parameter increases.
- 3.
- A higher Soret number decreases the Sherwood number, while curvature parameter , mixed convection parameter , and Biot number increase the local Nusselt number and local skin friction.
- 4.
- The concentration distribution and motile concentration profile decrease with the chemical reaction parameter.
- 5.
- The streamline graph illustrates the way fluid flow is affected simultaneously by the magnetic parameter M and an angled magnetic field.
- 6.
- The three-dimensional surface, scattered graph, pie chart, and residual plotting demonstrate the statistical analysis of the heat of heat transfer response.
- 7.
- The contours highlight the intricate interactions between restricted magnetic field, significant radiation, and substantial convective condition factors by display the best heat transmission.
- 8.
- The framework for maximizing hybrid nanofluid performance in practical applications where effective heat and mass transmission are essential is provided by a comprehension of magnetic and convective phenomena.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseinzadeh, K.; Asadi, A.; Mogharrebi, A.; Ermia Azari, M.; Ganji, D. Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect. J. Therm. Anal. Calorim. 2021, 143, 1081–1095. [Google Scholar] [CrossRef]
- Basir, M.; Faisal, M.; Kumar, R.; Sarojamma, G.; Narayana, P.; Raza, J.; Mahmood, A. Exploration of thermal-diffusion and diffusion-thermal effects on the motion of temperature-dependent viscous fluid conveying microorganism. Arab. J. Sci. Eng. 2019, 44, 8023–8033. [Google Scholar] [CrossRef]
- Areekara, S.; Sabu, A.S.; Mathew, A.; Saravanan, B. Statistical analysis on the stratification effects of bioconvective EMHD nanofluid flow past a stretching sheet: Application in theranostics. Heat Transf. 2021, 50, 6680–6702. [Google Scholar] [CrossRef]
- Saranya, S.; Radha, K. Review of nanobiopolymers for controlled drug delivery. Polym.-Plast. Technol. Eng. 2014, 53, 1636–1646. [Google Scholar] [CrossRef]
- Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S. Finite element simulation of multi-slip effects on unsteady MHD bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions. Coatings 2019, 9, 842. [Google Scholar] [CrossRef]
- Yahaya, R.I.; Arifin, N.M.; Ali, F.M.; Isa, S. Hybrid Nanofluid Flow with multiple slips over a Permeable Stretching/Shrinking sheet embedded in a porous medium. J. Adv. Res. Fluid Mech. Therm. Sci. 2023, 106, 143–152. [Google Scholar] [CrossRef]
- Khan, Z.H.; Khan, W.A.; Ibrahim, S.M.; Swain, K.; Huang, Z. Impact of multiple slips and thermal radiation on heat and mass transfer in MHD Maxwell hybrid nanofluid flow over porous stretching sheet. Case Stud. Therm. Eng. 2024, 61, 104906. [Google Scholar] [CrossRef]
- Cherala, S.S.; Gajjela, N.; Reddy, G.S.; Thumma, T. Mixed convective hydromagnetic radiative flow of ferro-hybrid nanofluid over an inclined elongating cylinder with heat generation and variable properties: Heat transfer analysis. J. Therm. Anal. Calorim. 2025, 1–18. [Google Scholar] [CrossRef]
- Sulaiman Basha, M.I.; Anthony, D.M.G. Numerical investigation of non-linear radiative flow of hybrid nanofluid past a stretching cylinder with inclined magnetic field. Numer. Heat Transf. Part B Fundam. 2024, 85, 842–866. [Google Scholar] [CrossRef]
- Alam, M.M.; Arshad, M.; Alharbi, F.M.; Al-Essa, L.A.; Galal, A.M. Heat and mass transmission for hybrid nanofluid flow in rotating system: Effects of microorganism motility. J. Therm. Anal. Calorim. 2025, 1–15. [Google Scholar] [CrossRef]
- Pattnaik, P.; Panda, S.; Mishra, S.; Baithalu, R. Enhanced heat transfer in micropolar fluids with inclined magnetic field and chemical reaction used in solar and geothermal energy systems: A comparative solution with semi-analytical approaches. Chaos Solitons Fractals 2025, 198, 116566. [Google Scholar] [CrossRef]
- Galal, A.M.; Zeemam, M.; Imran, M.; Basit, M.A.; Tahir, M.; Akram, S.; Younis, J. Numerical exploration of bioconvection in optimizing nanofluid flow through heated stretched cylinder in existence of magnetic field. Multidiscip. Model. Mater. Struct. 2025, 21, 425–447. [Google Scholar] [CrossRef]
- Ullah, I.; Ullah, H.; Nadeem, S.; Alzabut, J.; Saleem, S.; Alblawi, A. Inclined MHD mixed convection of a Bingham fluid in a lid-driven square cavity with an embedded wavy cylinder: Thermal and magnetic field interactions. J. Therm. Anal. Calorim. 2025, 150, 10105–10126. [Google Scholar] [CrossRef]
- Kumbhakar, B.; Nandi, S.; Chamkha, A.J. Unsteady hybrid nanofluid flow over a convectively heated cylinder with inclined magnetic field and viscous dissipation: A multiple regression analysis. Chin. J. Phys. 2022, 79, 38–56. [Google Scholar] [CrossRef]
- Riaz, A.; Abbasi, A.; Al-Khaled, K.; Gulzar, S.; Khan, S.U.; Farooq, W.; El-Din, E.M.T. A numerical analysis of the transport of modified hybrid nanofluids containing various nanoparticles with mixed convection applications in a vertical cylinder. Front. Phys. 2022, 10, 1018148. [Google Scholar] [CrossRef]
- Haq, F.; Khan, M.I.; Chu, Y.M.; Khan, N.B.; Kadry, S. Non-magnetized mixed convective viscous flow submerged in titanium oxide and aluminum titanium oxide hybrid nanoparticles towards a surface of cylinder. Int. Commun. Heat Mass Transf. 2021, 120, 105027. [Google Scholar] [CrossRef]
- Shojaei, A.; Amiri, A.J.; Ardahaie, S.S.; Hosseinzadeh, K.; Ganji, D. Hydrothermal analysis of Non-Newtonian second grade fluid flow on radiative stretching cylinder with Soret and Dufour effects. Case Stud. Therm. Eng. 2019, 13, 100384. [Google Scholar] [CrossRef]
- Ramzan, M.; Farooq, M.; Hayat, T.; Alsaedi, A.; Cao, J. MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects. J. Cent. South Univ. 2015, 22, 707–716. [Google Scholar] [CrossRef]
- Waqas, H.; Imran, M.; Bhatti, M. Influence of bioconvection on Maxwell nanofluid flow with the swimming of motile microorganisms over a vertical rotating cylinder. Chin. J. Phys. 2020, 68, 558–577. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, M. Boundary layer flow and heat transfer analysis on Cu-water nanofluid flow over a stretching cylinder with slip. Alex. Eng. J. 2017, 56, 671–677. [Google Scholar] [CrossRef]
- Hayat, T.; Shafiq, A.; Alsaedi, A. MHD axisymmetric flow of third grade fluid by a stretching cylinder. Alex. Eng. J. 2015, 54, 205–212. [Google Scholar] [CrossRef]
- Sreedevi, P.; Reddy, P.S. Williamson hybrid nanofluid flow over swirling cylinder with Cattaneo–Christov heat flux and gyrotactic microorganism. Waves Random Complex Media 2024, 34, 2767–2794. [Google Scholar] [CrossRef]
- Shilpa, B.; Badruddin, I.A.; Kamangar, S.; Zuber, M.; Mahmoud, E.R. Magneto-Convection and Cattaneo–Christov Heat Transport in a magnetically driven porous cylinder. Case Stud. Therm. Eng. 2025, 75, 107044. [Google Scholar] [CrossRef]
- Xia, W.F.; Ahmad, S.; Khan, M.N.; Ahmad, H.; Rehman, A.; Baili, J.; Gia, T.N. Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions. Case Stud. Therm. Eng. 2022, 32, 101893. [Google Scholar] [CrossRef]
- Dey, D.; Borah, R.; Mahanta, B. Boundary layer flow and its dual solutions over a stretching cylinder: Stability analysis. In Emerging Technologies in Data Mining and Information Security: Proceedings of IEMIS 2020, Kolkata, India, 2–4 July 2020; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1, pp. 27–38. [Google Scholar]
- Islam, S.; Khan, A.; Kumam, P.; Alrabaiah, H.; Shah, Z.; Khan, W.; Zubair, M.; Jawad, M. Radiative mixed convection flow of maxwell nanofluid over a stretching cylinder with joule heating and heat source/sink effects. Sci. Rep. 2020, 10, 17823. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, M. Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation. Alex. Eng. J. 2017, 56, 55–62. [Google Scholar] [CrossRef]
- Sulochana, C.; Sandeep, N. Stagnation point flow and heat transfer behavior of Cu–water nanofluid towards horizontal and exponentially stretching/shrinking cylinders. Appl. Nanosci. 2016, 6, 451–459. [Google Scholar] [CrossRef]
- Rashid, U.; Liang, H.; Ahmad, H.; Abbas, M.; Iqbal, A.; Hamed, Y. Study of (Ag and TiO2)/water nanoparticles shape effect on heat transfer and hybrid nanofluid flow toward stretching shrinking horizontal cylinder. Results Phys. 2021, 21, 103812. [Google Scholar] [CrossRef]
- Khan, N.S.; Kumam, P.; Thounthong, P. Second law analysis with effects of Arrhenius activation energy and binary chemical reaction on nanofluid flow. Sci. Rep. 2020, 10, 1226. [Google Scholar] [CrossRef]
- Hayat, T.; Kiyani, M.; Alsaedi, A.; Khan, M.I.; Ahmad, I. Mixed convective three-dimensional flow of Williamson nanofluid subject to chemical reaction. Int. J. Heat Mass Transf. 2018, 127, 422–429. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, L.; Nazir, F.; Ahmed, J.; Mohamed, A.; Khan, I.; Elseesy, I.E. Heat transfer in transient motion of thin film coatings with copper (Cu), aluminium oxide (Al2O3) and molybdenum disulfide (MoS2) nanoparticles over a stretching cylinder. Case Stud. Therm. Eng. 2025, 69, 105951. [Google Scholar] [CrossRef]
- Kumar, P.; Poonia, H.; Ali, L.; Areekara, S.; Mathew, A. Effects of different nanoparticles Cu, TiO2, and Ag on fluid flow and heat transfer over cylindrical surface subject to non-fourier heat flux model. Numer. Heat Transf. Part B Fundam. 2024, 85, 325–343. [Google Scholar] [CrossRef]
- Khan, A.; Iqbal, Z.; Ahammad, N.A.; Sidi, M.O.; Elattar, S.; Awad, S.; Yousef, E.S.; Eldin, S.M. Bioconvection Maxwell nanofluid flow over a stretching cylinder influenced by chemically reactive activation energy surrounded by a permeable medium. Front. Phys. 2023, 10, 1065264. [Google Scholar] [CrossRef]
- Ali, B.; Naqvi, R.A.; Ali, L.; Abdal, S.; Hussain, S. A comparative description on time-dependent rotating magnetic transport of a water base liquid H2O with hybrid nano-materials Al2O3-Cu and Al2O3-TiO2 over an extending sheet using Buongiorno model: Finite element approach. Chin. J. Phys. 2021, 70, 125–139. [Google Scholar] [CrossRef]
- Yashkun, U.; Zaimi, K.; Ishak, A.; Pop, I.; Sidaoui, R. Hybrid nanofluid flow through an exponentially stretching/shrinking sheet with mixed convection and Joule heating. Int. J. Numer. Methods Heat Fluid Flow 2021, 31, 1930–1950. [Google Scholar] [CrossRef]
- Kiusalaas, J. Numerical Methods in Engineering with MATLAB®; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S.; Mutahir, A. The Impact of Nanoparticles Due to Applied Magnetic Dipole in Micropolar Fluid Flow Using the Finite Element Method. Symmetry 2020, 12, 520. [Google Scholar] [CrossRef]
- Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [Google Scholar] [CrossRef]
- Merkin, J. Mixed convection from a horizontal circular cylinder. Int. J. Heat Mass Transf. 1977, 20, 73–77. [Google Scholar] [CrossRef]
- El-Zahar, E.; Rashad, A.; Saad, W.; Seddek, L. Magneto-hybrid nanofluids flow via mixed convection past a radiative circular cylinder. Sci. Rep. 2020, 10, 10494. [Google Scholar]
- Nazar, R.; Amin, N.; Pop, I. Mixed convection boundary-layer flow from a horizontal circular cylinder in micropolar fluids: Case of constant wall temperature. Int. J. Numer. Methods Heat Fluid Flow 2003, 13, 86–109. [Google Scholar] [CrossRef]













| Properties | Hybrid Nanofluid |
|---|---|
| Density | |
| (Viscosity) | |
| (The Heat Capacity) | |
| (Thermal conductivity) (k) | |
| Effective Electrical Conductivity expansion | |
| Physical Properties | (kg·m−3) | (J/kg·K) | (W/m·K) | k−1 |
|---|---|---|---|---|
| 3970 | 765 | 40 | ||
| 385 | 401 | |||
| 4179 |
| Merkin [40] | R. Zahar [41] | Nazarr et al. [42] | Current Result | |
|---|---|---|---|---|
| −1.75 | 0.4199 | 0.4205 | 0.4198 | 0.419860 |
| −1.5 | 0.4576 | 0.4601 | 0.4573 | 0.457330 |
| −1.0 | 0.5067 | 0.5080 | 0.5067 | 0.506627 |
| −0.5 | 0.5420 | 0.5430 | 0.5421 | 0.542028 |
| 0.0 | 0.5705 | 0.5710 | 0.5705 | 0.570428 |
| 0.5 | 0.5943 | 0.5949 | 0.5945 | 0.594492 |
| 0.88 | 0.6096 | 0.6112 | 0.6108 | 0.610721 |
| 0.89 | 0.6110 | 0.6116 | 0.6112 | 0.611130 |
| 1.0 | 0.6158 | 0.6160 | 0.6154 | 0.615555 |
| 2.0 | 0.6497 | 0.6518 | 0.6515 | 0.651459 |
| 5.0 | 0.7315 | 0.7320 | 0.7315 | 0.731470 |
| M | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.5 | 6.2 | 0.4 | 0.1 | 0.5 | 0.3 | 1.542091 | 1.4357083 | 1.3872560 | 0.45799024 | 0.45582801 | 0.45474962 |
| 1.0 | - | - | - | - | - | 1.487270 | 1.299062 | 1.2214316 | 0.4569085 | 0.45260619 | 0.45049154 |
| 1.5 | - | - | - | - | - | 1.4357083 | 1.1861843 | 1.0929054 | 0.4558280 | 0.44944837 | 0.44638881 |
| 2.0 | - | - | - | - | - | 1.387256 | 1.092905 | 0.9925463 | 0.4547496 | 0.44638881 | 0.4424943 |
| 0.5 | 6.2 | 0.4 | 0.1 | 0.5 | 0.3 | 1.542091 | 1.4357083 | 1.3872560 | 0.45799024 | 0.45582801 | 0.45474962 |
| - | 4.0 | - | - | - | - | 1.550887 | 1.4446391 | 1.3962409 | 0.4462934 | 0.4438105 | 0.4425696 |
| - | 6.0 | - | - | - | - | 1.5426978 | 1.4363257 | 1.3878777 | 0.4571679 | 0.4549831 | 0.4538931 |
| - | 10.0 | - | - | - | - | 1.534125 | 1.4275856 | 1.3790647 | 0.4690864 | 0.46723595 | 0.466313 |
| 0.5 | 6.2 | 0.4 | 0.1 | 0.5 | 0.3 | 1.542091 | 1.435708 | 1.387256 | 0.457990 | 0.455828 | 0.454749 |
| - | - | 0.3 | - | - | - | 1.532873 | 1.426230 | 1.377657 | 0.457904 | 0.455730 | 0.454645 |
| - | - | 0.5 | - | - | - | 1.551274 | 1.445147 | 1.396813 | 0.458075 | 0.455925 | 0.454852 |
| - | - | 0.7 | - | - | - | 1.569538 | 1.463909 | 1.415807 | 0.458242 | 0.456116 | 0.455056 |
| 0.5 | 6.2 | 0.4 | 0.1 | 0.5 | 0.3 | 1.542091 | 1.435708 | 1.387256 | 0.457990 | 0.455828 | 0.454749 |
| - | - | - | 0.2 | - | - | 1.597780 | 1.487220 | 1.436756 | 0.458215 | 0.456045 | 0.4549596 |
| - | - | - | 0.4 | - | - | 1.704892 | 1.586953 | 1.532915 | 0.458728 | 0.456568 | 0.455485 |
| - | - | - | 0.6 | - | - | 1.807422 | 1.683175 | 1.626057 | 0.459279 | 0.457155 | 0.456089 |
| 0.5 | 6.2 | 0.4 | 0.1 | 0.5 | 0.3 | 1.542091 | 1.4357083 | 1.3872560 | 0.45799024 | 0.45582801 | 0.45474962 |
| - | - | - | - | 0.1 | - | 1.535823 | 1.429301 | 1.380787 | 0.305696 | 0.303945 | 0.303076 |
| - | - | - | - | 0.5 | - | 1.542091 | 1.435708 | 1.387256 | 0.457990 | 0.455828 | 0.454749 |
| - | - | - | - | 0.9 | - | 1.547405 | 1.441128 | 1.392720 | 0.610408 | 0.607768 | 0.606444 |
| 0.5 | 6.2 | 0.4 | 0.1 | 0.5 | 0.3 | 1.542091 | 1.4357083 | 1.3872560 | 0.45799024 | 0.45582801 | 0.45474962 |
| - | - | - | - | - | 0.1 | 1.520130 | 1.413196 | 1.364490 | 0.169248 | 0.168943 | 0.168791 |
| - | - | - | - | - | 0.4 | 1.550379 | 1.444147 | 1.395762 | 0.582570 | 0.579108 | 0.577384 |
| - | - | - | - | - | 0.7 | 1.568877 | 1.462880 | 1.414591 | 0.897341 | 0.889296 | 0.885309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandeep; Aquib, M.; Kumar, P.; Malik, P.S. Insights into Inclined MHD Hybrid Nanofluid Flow over a Stretching Cylinder with Nonlinear Radiation and Heat Flux: A Symmetric Numerical Simulation. Symmetry 2025, 17, 1809. https://doi.org/10.3390/sym17111809
Sandeep, Aquib M, Kumar P, Malik PS. Insights into Inclined MHD Hybrid Nanofluid Flow over a Stretching Cylinder with Nonlinear Radiation and Heat Flux: A Symmetric Numerical Simulation. Symmetry. 2025; 17(11):1809. https://doi.org/10.3390/sym17111809
Chicago/Turabian StyleSandeep, Md Aquib, Pardeep Kumar, and Partap Singh Malik. 2025. "Insights into Inclined MHD Hybrid Nanofluid Flow over a Stretching Cylinder with Nonlinear Radiation and Heat Flux: A Symmetric Numerical Simulation" Symmetry 17, no. 11: 1809. https://doi.org/10.3390/sym17111809
APA StyleSandeep, Aquib, M., Kumar, P., & Malik, P. S. (2025). Insights into Inclined MHD Hybrid Nanofluid Flow over a Stretching Cylinder with Nonlinear Radiation and Heat Flux: A Symmetric Numerical Simulation. Symmetry, 17(11), 1809. https://doi.org/10.3390/sym17111809

