Stochastic Modeling and Probabilistic Assessment of Polycystic Ovary Syndrome (PCOS): Symmetry and Asymmetry in Infertility and Treatment Dynamics
Abstract
1. Introduction
Model Assumptions and Justification for Stochastic Modeling
2. Mathematical Analysis of Model (2)
Existence and Uniqueness of Solution
3. Extinction of the Model
- (a)
- Non-degeneracy of the diffusion matrix.
- (b)
- Lyapunov function and negativity of generator outside a compact set.
4. Numerical Demonstrations and Discussion
Parameters’ Effects on the Dynamics
5. Conclusions
Limitations and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dennett, C.C.; Simon, J. The role of polycystic ovary syndrome in reproductive and metabolic health: Overview and approaches for treatment. Diabetes Spectr. 2015, 28, 116–120. [Google Scholar] [CrossRef]
- Rausch, M.E.; Legro, R.S.; Barnhart, H.X.; Schlaff, W.D.; Carr, B.R.; Diamond, M.P.; Carson, S.A.; Steinkampf, M.P.; McGovern, P.G.; Cataldo, N.A.; et al. Predictors of pregnancy in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2009, 94, 3458–3466. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, R.; Webster, N.J.G. GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr. J. 2009, 56, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Grattan, D.R.; Jasoni, C.L.; Liu, X.; Anderson, G.M.; Herbison, A.E. Prolactin regulation of gonadotropin-releasing hormone neurons to suppress luteinizing hormone secretion in mice. Endocrinology 2007, 148, 4344–4351. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, A. Polycystic ovary syndrome: Causes, symptoms, pathophysiology, and remedies. Obes. Med. 2023, 39, 100480. [Google Scholar] [CrossRef]
- Hafezi, S.G.; Zand, M.A.; Molaei, M.; Eftekhar, M. Dynamic model with factors of polycystic ovarian syndrome in infertile women. Int. J. Reprod. Biomed. 2019, 17, 231. [Google Scholar]
- Tiwari, S.; Kane, L.; Koundal, D.; Jain, A.; Alhudhaif, A.; Polat, K.; Zaguia, A.; Alenezi, F.; Althubiti, S.A. SPOSDS: A smart Polycystic Ovary Syndrome diagnostic system using machine learning. Expert Syst. Appl. 2022, 203, 117592. [Google Scholar] [CrossRef]
- Nasim, S.; Almutairi, M.S.; Munir, K.; Raza, A.; Younas, F. A novel approach for polycystic ovary syndrome prediction using machine learning in bioinformatics. IEEE Access 2022, 10, 97610–97624. [Google Scholar] [CrossRef]
- Batool, M.; Farman, M.; Ahmad, A.; Nisar, K.S. Mathematical study of polycystic ovarian syndrome disease including medication treatment mechanism for infertility in women. AIMS Public Health 2023, 11, 19. [Google Scholar] [CrossRef]
- Kotlyar, A.M.; Seifer, D.B. Women with PCOS who undergo IVF: A comprehensive review of therapeutic strategies for successful outcomes. Reprod. Biol. Endocrinol. 2023, 21, 70. [Google Scholar] [CrossRef]
- Sun, Y.-F.; Zhang, J.; Xu, Y.-M.; Cao, Z.-Y.; Wang, Y.-Z.; Hao, G.-M.; Gao, B.-L. High BMI and insulin resistance are risk factors for spontaneous abortion in patients with polycystic ovary syndrome undergoing assisted reproductive treatment: A systematic review and meta-analysis. Front. Endocrinol. 2020, 11, 592495. [Google Scholar] [CrossRef]
- Mayrhofer, D.; Hager, M.; Walch, K.; Ghobrial, S.; Rogenhofer, N.; Marculescu, R.; Seemann, R.; Ott, J. The prevalence and impact of polycystic ovary syndrome in recurrent miscarriage: A retrospective cohort study and meta-analysis. J. Clin. Med. 2020, 9, 2700. [Google Scholar] [CrossRef] [PubMed]
- Din, A. Bifurcation analysis of a delayed stochastic HBV epidemic model: Cell-to-cell transmission. Chaos Solitons Fractals 2024, 181, 114714. [Google Scholar] [CrossRef]
- Din, A.; Sabbar, Y.; Wu, P. A novel stochastic Hepatitis B virus epidemic model with second-order multiplicative α-stable noise and real data. Acta Math. Sci. 2024, 44, 752–788. [Google Scholar] [CrossRef]
- Xu, C.; Pang, Y.; Liu, Z.; Shen, J.; Liao, M.; Li, P. Insights into COVID-19 stochastic modelling with effects of various transmission rates: Simulations with real statistical data from UK, Australia, Spain, and India. Phys. Scr. 2024, 99, 025218. [Google Scholar] [CrossRef]
- Mamis, K.; Farazmand, M. Stochastic compartmental models of the COVID-19 pandemic must have temporally correlated uncertainties. Proc. R. Soc. A 2023, 479, 20220568. [Google Scholar] [CrossRef]
- Lu, C.; Sun, G.; Zhang, Y. Stationary distribution and extinction of a multi-stage HIV model with nonlinear stochastic perturbation. J. Appl. Math. Comput. 2022, 68, 885–907. [Google Scholar] [CrossRef]
- Rao, F.; Tan, Y.; Lian, X. Stochastic analysis of an HIV model with various infection stages. Adv. Contin. Discret. Models 2025, 2025, 38. [Google Scholar] [CrossRef]
- Alzabut, J.; Alobaidi, G.; Hussain, S.; Madi, E.N.; Khan, H. Stochastic dynamics of influenza infection: Qualitative analysis and numerical results. Math. Biosci. Eng. 2022, 19, 10316–10331. [Google Scholar] [CrossRef]
- ur Rahman, G.; Badshah, Q.; Agarwal, R.P.; Islam, S. Ergodicity & dynamical aspects of a stochastic childhood disease model. Math. Comput. Simul. 2021, 182, 738–764. [Google Scholar] [CrossRef]
- Martheswaran, T.K.; Hamdi, H.; Al-Barty, A.; Zaid, A.A.; Das, B. Prediction of dengue fever outbreaks using climate variability and Markov chain Monte Carlo techniques in a stochastic susceptible-infected-removed model. Sci. Rep. 2022, 12, 5459. [Google Scholar] [CrossRef]
- Hajri, Y.; Assiri, T.A.; Amine, S.; Ahmad, S.; la Sen, M.D. A stochastic co-infection model for HIV-1 and HIV-2 epidemic incorporating drug resistance and dual saturated incidence rates. Alex. Eng. J. 2023, 84, 24–36. [Google Scholar] [CrossRef]
- Farah, E.M.; Amine, S.; Ahmad, S.; Nonlaopon, K.; Allali, K. Theoretical and numerical results of a stochastic model describing resistance and non-resistance strains of influenza. Eur. Phys. J. Plus 2022, 137, 1–15. [Google Scholar] [CrossRef]
- Ko, Y.; Mendoza, V.M.; Mendoza, R.; Seo, Y.; Lee, J.; Jung, E. Estimation of monkeypox spread in a nonendemic country considering contact tracing and self-reporting: A stochastic modeling study. J. Med. Virol. 2023, 95, e28232. [Google Scholar] [CrossRef]
- Alqahtani, A.M.; Akram, S.; Ahmad, J.; Aldwoah, K.A.; Rahman, M.u. Stochastic wave solutions of fractional Radhakrishnan–Kundu–Lakshmanan equation arising in optical fibers with their sensitivity analysis. J. Opt. 2024. In press. [Google Scholar] [CrossRef]
- Aldwoah, K.; Mustafa, A.; Aljaaidi, T.; Mohamed, K.; Alsulami, A.; Hassan, M. Exploring the impact of Brownian motion on novel closed-form solutions of the extended Kairat-II equation. PLoS ONE 2025, 20, e0314849. [Google Scholar] [CrossRef] [PubMed]
- Kamel, A.; Louati, H.Y.; Aldwoah, K.; Alqarni, F.; Almalahi, M.; Hleili, M. Stochastic analysis and soliton solutions of the Chaffee–Infante equation in nonlinear optical media. Bound. Value Probl. 2024, 2024, 119. [Google Scholar] [CrossRef]
- Baber, M.Z.; Ahmed, N.; Xu, C.; Iqbal, M.S.; Sulaiman, T.A. A computational scheme and its comparison with optical soliton solutions for the stochastic Chen–Lee–Liu equation with sensitivity analysis. Mod. Phys. Lett. B 2025, 39, 2450376. [Google Scholar] [CrossRef]
- Baber, M.Z.; Yasin, M.W.; Xu, C.; Ahmed, N.; Iqbal, M.S. Numerical and analytical study for the stochastic spatial dependent prey–predator dynamical system. J. Comput. Nonlinear Dyn. 2024, 19, 101003. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, T.; Yuan, S. Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation. Ecol. Complex. 2021, 45, 100889. [Google Scholar] [CrossRef]
- Lei, J.; Mackey, M.C. Stochastic differential delay equation, moment stability, and application to hematopoietic stem cell regulation system. SIAM J. Appl. Math. 2007, 67, 387–407. [Google Scholar] [CrossRef]
- Atzberger, P.J. Stochastic Eulerian Lagrangian methods for fluid–structure interactions with thermal fluctuations. J. Comput. Phys. 2011, 230, 2821–2837. [Google Scholar] [CrossRef]
- Bean, N.G.; O’Reilly, M.M. The stochastic fluid–fluid model: A stochastic fluid model driven by an uncountable-state process, which is a stochastic fluid model itself. Stoch. Processes Their Appl. 2014, 124, 1741–1772. [Google Scholar] [CrossRef]
- Ahmad, S.; Aldosary, S.F.; Khan, M.A. Stochastic solitons of a short-wave intermediate dispersive variable (SIdV) equation. AIMS Math. 2024, 9, 10717–10733. [Google Scholar] [CrossRef]
- Ahmad, S.; Saifullah, S.; Ventre, V. Stochastic dynamical analysis, Monte-Carlo simulations, and waves dynamics of a coupled volatility and option pricing model under Brownian motion. Chin. J. Phys. 2025, 94, 9–29. [Google Scholar] [CrossRef]
- De Feo, F.; Federico, S.; Swiech, A. Optimal control of stochastic delay differential equations and applications to path-dependent financial and economic models. Siam J. Control Optim. 2024, 62, 1490–1520. [Google Scholar] [CrossRef]
- Verdejo, H.; Awerkin, A.; Kliemann, W.; Becker, C. Modelling uncertainties in electrical power systems with stochastic differential equations. Int. J. Electr. Power Energy Syst. 2019, 113, 322–332. [Google Scholar] [CrossRef]
- Mao, X. Stochastic Differential Equations and Applications; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Khasminskii, R. Stochastic Stability of Differential Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Din, A.; Khan, T.; Li, Y.; Tahir, H.; Khan, A.; Khan, W.A. Mathematical analysis of dengue stochastic epidemic model. Results Phys. 2021, 20, 103719. [Google Scholar] [CrossRef]









| Parameter | Description | Value | Source |
|---|---|---|---|
| Recruitment rate women undergoing therapeutic treatment | 100 | Assumed | |
| Mortality rate | 0.30 | [9] | |
| Rate of abortion and restarting of treatment | 0.24 | [9] | |
| Rate of therapy for women who conceived using medication | 0.47 | [9] | |
| Treatment rate among the patient class | 0.47 | [9] | |
| Rate of medical therapy | 0.40 | Assumed | |
| Recovery rate in | 0.90 | [9] | |
| Rate of recovery of | 0.04 | [9] |
| Variable | Mean | Variance |
|---|---|---|
| 6.839 | 0.082 | |
| 127.172 | 29.459 | |
| 19.909 | 0.844 | |
| 2.400 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldwoah, K.; A. Qurtam, A.; Almalahi, M.; Muflh, B.; Elsayed, A.; Abd El-latif, A.M.; Ali, S.O. Stochastic Modeling and Probabilistic Assessment of Polycystic Ovary Syndrome (PCOS): Symmetry and Asymmetry in Infertility and Treatment Dynamics. Symmetry 2025, 17, 1806. https://doi.org/10.3390/sym17111806
Aldwoah K, A. Qurtam A, Almalahi M, Muflh B, Elsayed A, Abd El-latif AM, Ali SO. Stochastic Modeling and Probabilistic Assessment of Polycystic Ovary Syndrome (PCOS): Symmetry and Asymmetry in Infertility and Treatment Dynamics. Symmetry. 2025; 17(11):1806. https://doi.org/10.3390/sym17111806
Chicago/Turabian StyleAldwoah, Khaled, Ashraf A. Qurtam, Mohammed Almalahi, Blgys Muflh, Abdelaziz Elsayed, Alaa M. Abd El-latif, and Salahedden Omer Ali. 2025. "Stochastic Modeling and Probabilistic Assessment of Polycystic Ovary Syndrome (PCOS): Symmetry and Asymmetry in Infertility and Treatment Dynamics" Symmetry 17, no. 11: 1806. https://doi.org/10.3390/sym17111806
APA StyleAldwoah, K., A. Qurtam, A., Almalahi, M., Muflh, B., Elsayed, A., Abd El-latif, A. M., & Ali, S. O. (2025). Stochastic Modeling and Probabilistic Assessment of Polycystic Ovary Syndrome (PCOS): Symmetry and Asymmetry in Infertility and Treatment Dynamics. Symmetry, 17(11), 1806. https://doi.org/10.3390/sym17111806

