Statistical Learning-Assisted Evolutionary Algorithm for Digital Twin-Driven Job Shop Scheduling with Discrete Operation Sequence Flexibility
Abstract
1. Introduction
- (1)
- A mixed-integer linear programming (MILP) model is formulated to effectively solve small-scale instances. The experimental results demonstrate that the constructed MILP model can verify 6 optimal solutions in the test set.
- (2)
- A DT-enhanced initialization method is proposed to improve the quality of the initial population. It first constructs the relation between the physical workshop and the virtual workshop. The virtual workshop utilizes a high-fidelity digital twin environment to optimize the production scheme. Then, imitation learning is employed to absorb expert knowledge in the virtual workshop, and knowledge models are generated. Finally, these knowledge models are used to generate a high-quality initial population.
- (3)
- A statistical learning-assisted local search method is designed to adaptively select promising search operators at different stages of evolution. Six search operators are specifically designed for the JSPDS, and Thompson sampling is used to achieve adaptive selection of promising search operators.
2. Literature Review
2.1. JSP and Sequence Flexibility
2.2. DT for Shop Scheduling
2.3. Learning-Assisted EA
2.4. Summary
3. Problem Description
3.1. JSPDS Definition
3.2. Notations
3.3. MILP Model
4. DT-SLEA
4.1. DT-SLEA Framework
4.2. DT-Enhanced Initialization
4.3. Encoding and Decoding
4.4. Crossover and Mutation
4.5. Statistical Learning-Assisted Search
4.5.1. Search Operators
4.5.2. Thompson Sampling and Local Search
Algorithm 1. Thompson sampling and local search |
Input: Search operators set SO = {N1, N2, …, N6}, Ne elite individuals Output: Improved elite individuals Begin 1: For each search operator Ni ∊ SO do 2: set αi = 1, βi = 1 3: End for 4: For l = 1 to Ne do 5: For each search operator Ni ∊ SO 6: Sample pi∼Beta (αi, βi) 7: Record pi for search operator Ni 8: End for 9: N* = arg max pi 10: Apply the search operator N* to individual l 11: If the operator improves the solution (success) then 12: α* = α* + 1 13: Else (failure) 14: b* = b* + 1 15: Save the original individual 16: End if 17: End for 18: Return Improved elite individuals End |
5. Experiment Results
5.1. Experimental Instances and Performance Metrics
5.2. MILP Model Validation
5.3. Parameter Settings
5.4. Effectiveness of All Improved Components
5.5. Comparison of DT-SLEA with Other Algorithms
5.6. Case Study
6. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, Y.; Peng, C.; Lou, P.; Zhou, Z.; Hu, J.; Yan, J. Digital-twin-based job shop scheduling toward smart manufacturing. IEEE Trans. Ind. Inform. 2019, 15, 6425–6435. [Google Scholar] [CrossRef]
- Zeiträg, Y.; Rui Figueira, J.; Figueira, G. A cooperative coevolutionary hyper-heuristic approach to solve lot-sizing and job shop scheduling problems using genetic programming. Int. J. Prod. Res. 2024, 62, 5850–5877. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, C.; Zhang, B.; Gao, K.; Ren, Y.; Sang, H. MILP modeling and optimization of multi-objective flexible job shop scheduling problem with controllable processing times. Swarm Evol. Comput. 2023, 82, 101374. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, Z.; Shao, W.; Chen, J.; Pi, D. MRLM: A meta-reinforcement learning-based metaheuristic for hybrid flow-shop scheduling problem with learning and forgetting effects. Swarm Evol. Comput. 2024, 85, 101479. [Google Scholar] [CrossRef]
- Yuan, S.; Zhu, X.; Cai, W.; Gao, J.; Zhang, R. Mathematical modeling and hybrid evolutionary algorithm to schedule flexible job shop with discrete operation sequence flexibility. Comput. Oper. Res. 2025, 176, 106952. [Google Scholar] [CrossRef]
- Gong, G.; Tang, J.; Huang, D.; Luo, Q.; Zhu, K.; Peng, N. Energy-efficient flexible job shop scheduling problem considering discrete operation sequence flexibility. Swarm Evol. Comput. 2024, 84, 101421. [Google Scholar] [CrossRef]
- Cao, Z.; Lin, C.; Zhou, M. A knowledge-based cuckoo search algorithm to schedule a flexible job shop with sequencing flexibility. IEEE Trans. Autom. Sci. Eng. 2019, 18, 56–69. [Google Scholar] [CrossRef]
- Chang, X.; Jia, X.; Ren, J. A reinforcement learning enhanced memetic algorithm for multi-objective flexible job shop scheduling toward Industry 5.0. Int. J. Prod. Res. 2025, 63, 119–147. [Google Scholar] [CrossRef]
- Wagner, H.M. An integer linear-programming model for machine scheduling. Nav. Res. Logist. Q. 1959, 6, 131–140. [Google Scholar] [CrossRef]
- Bowman, E.H. The schedule-sequencing problem. Oper. Res. 1959, 7, 621–624. [Google Scholar] [CrossRef]
- Manne, A.S. On the job-shop scheduling problem. Oper. Res. 1960, 8, 219–223. [Google Scholar] [CrossRef]
- Davis, L. Job shop scheduling with genetic algorithms. In Proceedings of the First International Conference on Genetic Algorithms and their Applications, Pittsburgh, PA, USA, 24–26 July 1985; Psychology Press: New York, NY, USA, 2014. [Google Scholar]
- Van Laarhoven, P.J.; Aarts, E.H.; Lenstra, J.K. Job shop scheduling by simulated annealing. Oper. Res. 1992, 40, 113–125. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; Mendes, J.J.D.M.; Resende, M.G.C. A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 2005, 167, 77–95. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, D. An effective hybrid optimization strategy for job-shop scheduling problems. Comput. Oper. Res. 2001, 28, 585–596. [Google Scholar] [CrossRef]
- Park, B.J.; Choi, H.R.; Kim, H.S. A hybrid genetic algorithm for the job shop scheduling problems. Comput. Ind. Eng. 2003, 45, 597–613. [Google Scholar] [CrossRef]
- Błażewicz, J.; Domschke, W.; Pesch, E. The job shop scheduling problem: Conventional and new solution techniques. Eur. J. Oper. Res. 1996, 93, 1–33. [Google Scholar] [CrossRef]
- Dell’Amico, M.; Trubian, M. Applying tabu search to the job-shop scheduling problem. Ann. Oper. Res. 1993, 41, 231–252. [Google Scholar] [CrossRef]
- Nowicki, E.; Smutnicki, C. A fast taboo search algorithm for the job shop problem. Manag. Sci. 1996, 42, 797–813. [Google Scholar] [CrossRef]
- Balas, E.; Vazacopoulos, A. Guided local search with shifting bottleneck for job shop scheduling. Manag. Sci. 1998, 44, 262–275. [Google Scholar] [CrossRef]
- Zhang, C.; Li, P.; Guan, Z.; Rao, Y. A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem. Comput. Oper. Res. 2007, 34, 3229–3242. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Gao, L.; Gui, L. A hybrid algorithm with a new neighborhood structure for job shop scheduling problems. Comput. Ind. Eng. 2022, 169, 108205. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Gao, L.; Gui, L. A new neighbourhood structure for job shop scheduling problems. Int. J. Prod. Res. 2023, 61, 2147–2161. [Google Scholar] [CrossRef]
- May, G.; Stahl, B.; Taisch, M.; Prabhu, V. Multi-objective genetic algorithm for energy-efficient job shop scheduling. Int. J. Prod. Res. 2015, 53, 7071–7089. [Google Scholar] [CrossRef]
- Para, J.; Ser, J.D.; Nebro, A.J. Energy-aware multi-objective job shop scheduling optimization with metaheuristics in manufacturing industries: A critical survey, results, and perspectives. Appl. Sci. 2022, 12, 1491. [Google Scholar] [CrossRef]
- Lei, D. A Pareto archive particle swarm optimization for multi-objective job shop scheduling. Comput. Ind. Eng. 2008, 54, 960–971. [Google Scholar] [CrossRef]
- Tavakkoli-Moghaddam, R.; Azarkish, M.; Sadeghnejad-Barkousaraie, A. A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem. Expert Syst. Appl. 2011, 38, 10812–10821. [Google Scholar] [CrossRef]
- Lin, W.; Deng, Q.; Han, W.; Gong, G.; Li, K. An effective algorithm for flexible assembly job-shop scheduling with tight job constraints. Int. Trans. Oper. Res. 2022, 29, 496–525. [Google Scholar] [CrossRef]
- Wong, T.C.; Chan, F.T.; Chan, L.Y. A resource-constrained assembly job shop scheduling problem with lot streaming technique. Comput. Ind. Eng. 2009, 57, 983–995. [Google Scholar] [CrossRef]
- Lacomme, P.; Larabi, M.; Tchernev, N. Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles. Int. J. Prod. Econ. 2013, 143, 24–34. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, Q.; Li, X.; Gao, L. A novel MILP model for job shop scheduling problem with mobile robots. Robot. Comput.-Integr. Manuf. 2023, 81, 102506. [Google Scholar] [CrossRef]
- Han, X.; Cheng, W.; Meng, L.; Zhang, B.; Gao, K.; Zhang, C.; Duan, P. A dual population collaborative genetic algorithm for solving flexible job shop scheduling problem with AGV. Swarm Evol. Comput. 2024, 86, 101538. [Google Scholar] [CrossRef]
- Chaouch, I.; Driss, O.B.; Ghedira, K. A modified ant colony optimization algorithm for the distributed job shop scheduling problem. Procedia Comput. Sci. 2017, 12, 296–305. [Google Scholar] [CrossRef]
- Huang, J.; Gao, L.; Li, X. An end-to-end deep reinforcement learning method based on graph neural network for distributed job-shop scheduling problem. Expert Syst. Appl. 2024, 238, 121756. [Google Scholar] [CrossRef]
- Alvarez-Valdes, R.; Fuertes, A.; Tamarit, J.M.; Giménez, G.; Ramos, R. A heuristic to schedule flexible job-shop in a glass factory. Eur. J. Oper. Res. 2005, 165, 525–534. [Google Scholar] [CrossRef]
- Birgin, E.G.; Feofiloff, P.; Fernandes, C.G.; Melo, E.L.; Oshiro, M.T.I.; Ronconi, D.P. A MILP model for an extended version of the flexible job shop problem. Optim. Lett. 2014, 8, 1417–1431. [Google Scholar] [CrossRef]
- Birgin, E.G.; Ferreira, J.E.; Ronconi, D.P. List scheduling and beam search methods for the flexible job shop scheduling problem with sequencing flexibility. Eur. J. Oper. Res. 2015, 247, 421–440. [Google Scholar] [CrossRef]
- Lin, C.; Cao, Z.; Zhou, M. Learning-based cuckoo search algorithm to schedule a flexible job shop with sequencing flexibility. IEEE Trans. Cybern. 2022, 53, 6663–6675. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhao, X.; Ma, X. An improved genetic algorithm for job-shop scheduling problem with process sequence flexibility. Int. J. Simul. Model. 2014, 13, 510–522. [Google Scholar] [CrossRef]
- Xu, H.; Bao, Z.R.; Zhang, T. Solving dual flexible job-shop scheduling problem using a Bat Algorithm. Adv. Prod. Eng. Manag. 2017, 12, 5–16. [Google Scholar] [CrossRef]
- Kasapidis, G.A.; Paraskevopoulos, D.C.; Repoussis, P.P.; Tarantilis, C.D. Flexible job shop scheduling problems with arbitrary precedence graphs. Prod. Oper. Manag. 2021, 30, 4044–4068. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Zhang, C.; Chu, H.; Ding, G.; Zhang, L. A hybrid genetic-particle swarm algorithm based on multilevel neighbourhood structure for flexible job shop scheduling problem. Comput. Oper. Res. 2021, 135, 105431. [Google Scholar] [CrossRef]
- Vital-Soto, A.; Azab, A.; Baki, M.F. Mathematical modeling and a hybridized bacterial foraging optimization algorithm for the flexible job-shop scheduling problem with sequencing flexibility. J. Manuf. Syst. 2020, 54, 74–93. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, C.; Shi, J.; Zhang, W. An extended flexible job shop scheduling model for flight deck scheduling with priority, parallel operations, and sequence flexibility. Sci. Program. 2017, 2017, 2463252. [Google Scholar] [CrossRef]
- Li, Y.; Tao, Z.; Wang, L.; Du, B.; Guo, J.; Pang, S. Digital twin-based job shop anomaly detection and dynamic scheduling. Robot. Comput.-Integr. Manuf. 2023, 79, 102443. [Google Scholar] [CrossRef]
- Yu, H.; Han, S.; Yang, D.; Wang, Z.; Feng, W. Job shop scheduling based on digital twin technology: A survey and an intelligent platform. Complexity 2021, 2021, 8823273. [Google Scholar] [CrossRef]
- Yan, Q.; Wang, H.; Wu, F. Digital twin-enabled dynamic scheduling with preventive maintenance using a double-layer Q-learning algorithm. Comput. Oper. Res. 2022, 144, 105823. [Google Scholar] [CrossRef]
- Geng, S.; Huang, S.; Guo, Y.; Qian, W.; Fang, W.; Zhang, L.; Wang, S. Digital twin driven dynamic scheduling of discrete manufacturing workshop with transportation resource constraint using multi-agent deep reinforcement learning. Robot. Comput.-Integr. Manuf. 2025, 95, 103042. [Google Scholar] [CrossRef]
- Gao, Q.; Gu, F.; Li, L.; Guo, J. A framework of cloud-edge collaborated digital twin for flexible job shop scheduling with conflict-free routing. Robot. Comput.-Integr. Manuf. 2024, 86, 102672. [Google Scholar] [CrossRef]
- Chen, Z.; Zou, J.; Wang, W. Digital twin oriented multi-objective flexible job shop scheduling model and its hybrid particle swarm optimization. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 1269–1282. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, J.; Li, H.; Zhuang, C.; Liu, Z. Digital twin-driven dynamic scheduling for the assembly workshop of complex products with workers allocation. Robot. Comput.-Integr. Manuf. 2024, 89, 102786. [Google Scholar] [CrossRef]
- Zhang, M.; Tao, F.; Nee, A. Digital twin enhanced dynamic job-shop scheduling. J. Manuf. Syst. 2021, 58, 146–156. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, L.; Zheng, J.; Chen, J.; Wang, X. A learning-based multipopulation evolutionary optimization for flexible job shop scheduling problem with finite transportation resources. IEEE Trans. Evol. Comput. 2022, 27, 1590–1603. [Google Scholar] [CrossRef]
- Ma, J.; Gao, W.; Tong, W. A deep reinforcement learning assisted adaptive genetic algorithm for flexible job shop scheduling. Eng. Appl. Artif. Intell. 2025, 149, 110447. [Google Scholar] [CrossRef]
- Ding, L.; Luo, D.; Mudassar, R.; Yue, L.; Meng, L. A novel deep self-learning method for flexible job-shop scheduling problems with multiplicity: Deep reinforcement learning assisted the fluid master-apprentice evolutionary algorithm. Swarm Evol. Comput. 2025, 94, 101907. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L. A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible assembly scheduling. Comput. Ind. Eng. 2022, 168, 108126. [Google Scholar] [CrossRef]
- Wang, J.; Han, H.; Wang, L. A feedback learning-based memetic algorithm for energy-aware distributed flexible job-shop scheduling with transportation constraints. IEEE Trans. Evol. Comput. 2024, 29, 1085–1099. [Google Scholar] [CrossRef]
- Shao, Z.; Shao, W.; Chen, J.; Pi, D. MQL-MM: A meta-Q-learning-based multi-objective metaheuristic for energy-efficient distributed fuzzy hybrid blocking flow-shop scheduling problem. IEEE Trans. Evol. Comput. 2024, 29, 1183–1198. [Google Scholar] [CrossRef]
- Cheng, W.; Meng, L.; Zhang, B.; Gao, K.; Sang, H. Imitation learning-assisted evolutionary algorithm for energy-efficient flexible job shop scheduling problem with automated guided vehicles. IEEE Trans. Evol. Comput. 2025, 1. [Google Scholar] [CrossRef]
- Wang, G.; Wang, P.; Zhang, H. A self-adaptive memetic algorithm for distributed job shop scheduling problem. Mathematics 2024, 12, 683. [Google Scholar] [CrossRef]
- Li, W.; Yan, X.; Huang, Y. Cooperative-guided ant colony optimization with knowledge learning for job shop scheduling problem. Tsinghua Sci. Technol. 2024, 29, 1283–1299. [Google Scholar] [CrossRef]
- Wang, L.; Hu, X.; Wang, Y.; Xu, S.; Ma, S.; Yang, K.; Liu, Z.; Wang, W. Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning. Comput. Netw. 2021, 190, 107969. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, Z.; Zhao, F.; Feng, B.; Mei, X. A novel deep reinforcement learning framework based on digital twins for dynamic job shop scheduling problems. Expert Syst. Appl. 2026, 296, 128708. [Google Scholar] [CrossRef]
- Meng, L.; Cheng, W.; Zhang, C.; Gao, K.; Zhang, B.; Ren, Y. Novel CP models and CP-assisted meta-heuristic algorithm for flexible job shop scheduling benchmark problem with multi-AGV. IEEE Trans. Syst. Man Cybern. Syst. 2025, 1–14. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, P.; Wang, G.; Weng, G.; Chen, H. An overview of intelligent image segmentation using active contour models. Intell. Robot. 2023, 3, 23–55. [Google Scholar] [CrossRef]
- Chen, X.; Ma, F.; Wu, Y.; Han, B.; Luo, L.; Biancardo, S.A. MFMDepth: MetaFormer-based monocular metric depth estimation for distance measurement in ports. Comput. Ind. Eng. 2025, 207, 111325. [Google Scholar] [CrossRef]
Parameter | Definition |
---|---|
Job number | |
Total number of machines | |
Job indices | |
Operation indices | |
Machine indices | |
Job set, | |
Number of operations for job | |
Number of SCOs for job | |
Operation set for job , | |
SCOs set for job , | |
The operation of job | |
The set of eligible machines for operation . Its size is 1. | |
The time required for process on machine k. | |
A large positive number | |
Decision variables | |
0–1 decision variable, if is processed before operation , ; otherwise, . | |
0–1 decision variable, if operation is processed before operation , ; otherwise, . | |
Continuous decision variable, it denotes the starting time of the operation . | |
Continuous decision variables, it denotes the makespan. |
Instances | MILP Model | |
---|---|---|
Cmax | Time | |
JSPDS01 | 739 | 5.07 |
JSPDS02 | 827 | 2.78 |
JSPDS03 | 744 | 3.10 |
JSPDS04 | 856 | 11.91 |
JSPDS05 | 721 | 18.56 |
JSPDS06 | 804 | 20.21 |
JSPDS07 | 3045 | 3600 |
JSPDS08 | 4787 | 3600 |
JSPDS09 | 4576 | 3600 |
JSPDS10 | 4331 | 3600 |
JSPDS11 | 4781 | 3600 |
JSPDS12 | 5194 | 3600 |
JSPDS13 | 4804 | 3600 |
JSPDS14 | 5147 | 3600 |
JSPDS15 | 4545 | 3600 |
JSPDS16 | 6883 | 3600 |
JSPDS17 | 7314 | 3600 |
JSPDS18 | 8748 | 3600 |
JSPDS19 | 9229 | 3600 |
JSPDS20 | 8147 | 3600 |
Instance | EA | DT-EA | SLEA | ε-Greedy EA | DT-SLEA | |||||
---|---|---|---|---|---|---|---|---|---|---|
Best | Ave | Best | Ave | Best | Ave | Best | Ave | Best | Ave | |
JSPDS01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS07 | 1.98 | 2.01 | 0.56 | 0.63 | 0.58 | 0.64 | 0.93 | 1.73 | 0.00 | 0.00 |
JSPDS08 | 1.85 | 1.90 | 0.59 | 0.62 | 0.57 | 0.61 | 1.46 | 1.49 | 0.00 | 0.00 |
JSPDS09 | 1.23 | 1.96 | 0.63 | 0.65 | 0.50 | 0.66 | 0.88 | 1.35 | 0.00 | 0.00 |
JSPDS10 | 1.24 | 1.93 | 0.60 | 0.61 | 0.59 | 0.84 | 1.53 | 1.62 | 0.00 | 0.00 |
JSPDS11 | 1.94 | 1.23 | 0.55 | 0.67 | 0.92 | 0.66 | 1.22 | 1.70 | 0.00 | 0.00 |
JSPDS12 | 1.57 | 1.20 | 0.64 | 0.97 | 0.63 | 0.52 | 0.76 | 1.36 | 0.00 | 0.00 |
JSPDS13 | 1.97 | 2.20 | 0.58 | 0.59 | 0.62 | 0.63 | 1.42 | 2.74 | 0.00 | 0.00 |
JSPDS14 | 1.72 | 1.48 | 0.59 | 0.62 | 0.75 | 0.66 | 1.10 | 1.52 | 0.00 | 0.00 |
JSPDS15 | 1.95 | 2.02 | 0.61 | 0.64 | 0.59 | 0.65 | 1.48 | 1.93 | 0.00 | 0.00 |
JSPDS16 | 1.43 | 1.29 | 0.82 | 0.58 | 0.57 | 0.52 | 0.86 | 1.15 | 0.00 | 0.00 |
JSPDS17 | 1.30 | 1.42 | 0.60 | 0.75 | 0.87 | 0.61 | 0.90 | 1.09 | 0.00 | 0.00 |
JSPDS18 | 1.83 | 2.58 | 0.58 | 0.61 | 0.62 | 0.64 | 0.83 | 1.29 | 0.00 | 0.00 |
JSPDS19 | 1.34 | 1.47 | 0.56 | 0.60 | 0.60 | 0.63 | 0.74 | 1.12 | 0.00 | 0.00 |
JSPDS20 | 1.87 | 1.23 | 0.62 | 0.97 | 0.58 | 0.65 | 1.47 | 1.31 | 0.00 | 0.00 |
Mean | 1.16 | 1.20 | 0.43 | 0.48 | 0.45 | 0.45 | 0.78 | 1.07 | 0.00 | 0.00 |
DT-SLEA VS | R+/R− | p-Value | Remark |
---|---|---|---|
EA | 105/0 | 0.0001 | <0.05 |
DT-EA | 105/0 | 0.0001 | <0.05 |
SLEA | 105/0 | 0.0001 | <0.05 |
ε-greedy EA | 105/0 | 0.0001 | <0.05 |
Instance | SMA | CC-GP-HH | KLCACO | DRL-Wang | DRL-Zhang | DT-SLEA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Best | Ave | Best | Ave | Best | Ave | Best | Ave | Best | Ave | Best | Ave | |
JSPDS01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
JSPDS07 | 1.79 | 1.96 | 1.62 | 1.97 | 1.92 | 1.47 | 4.36 | 7.34 | 4.14 | 6.64 | 0.00 | 0.00 |
JSPDS08 | 1.21 | 1.34 | 1.53 | 1.95 | 1.89 | 1.94 | 4.11 | 6.32 | 3.42 | 5.76 | 0.00 | 0.00 |
JSPDS09 | 1.35 | 1.48 | 1.93 | 1.96 | 1.74 | 1.97 | 2.29 | 3.31 | 3.58 | 5.94 | 0.00 | 0.00 |
JSPDS10 | 1.23 | 1.92 | 1.25 | 1.41 | 1.24 | 1.36 | 1.82 | 2.30 | 3.60 | 5.00 | 0.00 | 0.00 |
JSPDS11 | 1.37 | 1.28 | 1.42 | 1.24 | 1.78 | 2.26 | 4.02 | 5.96 | 3.88 | 4.24 | 0.00 | 0.00 |
JSPDS12 | 1.26 | 1.90 | 1.45 | 1.92 | 1.20 | 1.40 | 2.11 | 4.60 | 3.63 | 6.02 | 0.00 | 0.00 |
JSPDS13 | 1.78 | 1.34 | 1.64 | 1.97 | 1.42 | 1.98 | 1.56 | 4.59 | 3.01 | 5.40 | 0.00 | 0.00 |
JSPDS14 | 1.21 | 1.93 | 1.29 | 1.40 | 1.89 | 1.94 | 3.31 | 3.39 | 3.69 | 3.96 | 0.00 | 0.00 |
JSPDS15 | 1.45 | 1.94 | 1.36 | 1.82 | 1.74 | 1.97 | 1.82 | 2.31 | 4.13 | 5.17 | 0.00 | 0.00 |
JSPDS16 | 1.67 | 1.47 | 1.23 | 1.24 | 1.47 | 1.23 | 2.08 | 5.44 | 3.71 | 6.44 | 0.00 | 0.00 |
JSPDS17 | 1.98 | 1.23 | 1.46 | 1.47 | 1.91 | 1.97 | 4.29 | 6.59 | 2.31 | 4.98 | 0.00 | 0.00 |
JSPDS18 | 1.33 | 1.02 | 1.39 | 1.34 | 1.87 | 1.91 | 2.67 | 5.13 | 3.40 | 5.83 | 0.00 | 0.00 |
JSPDS19 | 1.92 | 1.72 | 1.47 | 1.27 | 1.74 | 2.00 | 2.92 | 3.46 | 2.17 | 2.51 | 0.00 | 0.00 |
JSPDS20 | 1.83 | 1.92 | 1.35 | 1.96 | 1.92 | 1.93 | 4.08 | 5.30 | 2.34 | 2.77 | 0.00 | 0.00 |
Mean | 1.07 | 1.12 | 1.02 | 1.15 | 1.19 | 1.27 | 2.07 | 3.30 | 2.35 | 3.53 | 0.00 | 0.00 |
DT-SLEA VS | R+/R− | p-Value | Remark |
---|---|---|---|
SMA | 105/0 | 0.0001 | <0.05 |
CC-GP-HH | 105/0 | 0.0001 | <0.05 |
KLCACO | 105/0 | 0.0001 | <0.05 |
DRL-Wang | 105/0 | 0.0001 | <0.05 |
DRL-Zhang | 105/0 | 0.0001 | <0.05 |
Algorithm | Case1 | Case2 | Case3 | Case4 | ||||
---|---|---|---|---|---|---|---|---|
Best | Ave | Best | Ave | Best | Ave | Best | Ave | |
FIFO | 7.89 | 9.10 | 11.91 | 13.32 | 12.53 | 15.06 | 13.44 | 14.85 |
LWKR | 12.37 | 18.42 | 14.34 | 18.85 | 12.88 | 13.44 | 11.27 | 12.13 |
MWKR | 10.23 | 16.82 | 12.59 | 18.80 | 11.26 | 13.08 | 10.63 | 12.74 |
SMA | 0.00 | 0.00 | 6.78 | 8.48 | 7.05 | 9.28 | 7.42 | 12.16 |
CC-GP-HH | 0.00 | 0.00 | 6.91 | 8.02 | 7.68 | 9.86 | 7.90 | 10.78 |
KLCACO | 0.00 | 0.00 | 5.02 | 7.07 | 6.17 | 8.39 | 7.15 | 9.28 |
DRL-Wang | 0.00 | 0.00 | 9.40 | 12.16 | 9.86 | 12.89 | 8.07 | 13.08 |
DRL-Zhang | 0.00 | 0.00 | 8.07 | 12.01 | 7.05 | 11.79 | 7.13 | 12.59 |
DT-SLEA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Cheng, W.; Meng, L.; Zhang, C. Statistical Learning-Assisted Evolutionary Algorithm for Digital Twin-Driven Job Shop Scheduling with Discrete Operation Sequence Flexibility. Symmetry 2025, 17, 1614. https://doi.org/10.3390/sym17101614
Jia Y, Cheng W, Meng L, Zhang C. Statistical Learning-Assisted Evolutionary Algorithm for Digital Twin-Driven Job Shop Scheduling with Discrete Operation Sequence Flexibility. Symmetry. 2025; 17(10):1614. https://doi.org/10.3390/sym17101614
Chicago/Turabian StyleJia, Yan, Weiyao Cheng, Leilei Meng, and Chaoyong Zhang. 2025. "Statistical Learning-Assisted Evolutionary Algorithm for Digital Twin-Driven Job Shop Scheduling with Discrete Operation Sequence Flexibility" Symmetry 17, no. 10: 1614. https://doi.org/10.3390/sym17101614
APA StyleJia, Y., Cheng, W., Meng, L., & Zhang, C. (2025). Statistical Learning-Assisted Evolutionary Algorithm for Digital Twin-Driven Job Shop Scheduling with Discrete Operation Sequence Flexibility. Symmetry, 17(10), 1614. https://doi.org/10.3390/sym17101614