On Doubly-Generalized-Transmuted Distributions
Abstract
1. Introduction
2. DGT Distributions
- 1.
- The original transmuting function [1]:Note that if , this reduces to the distribution.
- 2.
- The exponentiating (EXP) function:If , this is the distribution; if , it corresponds to the distribution of the maximum of n i.i.d. variables.
- 2A.
- The exponentiating function of the second kind (EXP2):For , this yields the distribution; for , it is the distribution of the minimum of n i.i.d. variables.
- 3.
- The Marshall-Olkin function [11]:When , this simplifies to the distribution.
- 3A.
- The second kind Marshall-Olkin (MO2) function:Again, yields the distribution.
- 4.
- The Kumaraswamy function [12]:If , this corresponds to .It can also be expressed as a composition of two exponentiating functions:By reversing the order of composition, we define a second-kind Kumaraswamy function:
- 5.
- Mixtures. Granzotto and Louzada [13] observed that the SB transmutation function can be expressed as a convex combination of the maximum and minimum of a size-two sample from :They also explored convex combinations of multiple order statistics. More recently, Balakrishnan and He [14] proposed convex combinations of record value distributions (both lower and upper records). In general, convex combinations of any set of transmuting functions can be considered to generate more flexible transformation families.
Examples of Multiple Generalized Transmuted Distributions
- Transmuted Complementary Exponentiated Weibull-Geometric (TCEWG) model
- Transmuted Complementary Weibull-Geometric (TCWG) model
- Exponentiated Transmuted Weibull-Geometric (ETWG) model
- Exponentiated Geometric G-Poisson (EGGP) model
- Complementary Extended Weibull Power Series (CEWPS) models
- Complementary Exponentiated Weibull-Logarithmic (CEWLn) model
- Complementary Exponentiated Power Lindley-Poisson (CEPLP) model
- Poisson Generalized Linear Failure Rate (PGLFR) model
3. Multiple Transmutation
Transmuting Bivariate Models
4. Computational Implementation and Simulation Study
4.1. Computational Aspects
- 1.
- Install and load the necessary packages:
- 2.
- Load your data into R (say y).
- 3.
- To estimate a specific combination of distribution (dist) and and (comp1 and comp2, respectively), which are optional. For example, for the exponential model as baseline distribution with the and equal to EXP and MO models, we use the following sentence
- Positive data: exponential, gamma, log-normal, BS, and Pareto II.
- Unit data: beta and Kumaraswamy.
- Real data: normal, Cauchy, logistic and Gumbel.
4.2. Simulation Study
5. Applications of a Multiple Transmutation with Real Data
5.1. First Transmutation
Log-Likelihood Function
5.2. Second Transmutation
Log-Likelihood Function
5.3. Data I
Estimation and Model Selection
5.4. Data II
Estimation and Model Selection
6. Final Remark
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Codes for the Simulation Study
Appendix A.2. Codes for the First Application
Appendix A.3. Codes for the Second Application
References
- Shaw, W.T.; Buckley, I.R.C. The Alchemy of Probability Distributions: Beyond Gram-Charlier & Cornish-Fisher Expansions, and Skew-Normal or Kurtotic-Normal Distributions; Research Report; Wolfgram Memorial Library: Chester, PA, USA, 2007. [Google Scholar]
- Shaw, W.T.; Buckley, I.R.C. The alchemy of probability distributions: Beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. arXiv 2009, arXiv:0901.0434. [Google Scholar]
- Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions. Metron 2003, 71, 63–79. [Google Scholar] [CrossRef]
- Tahir, M.H.; Cordeiro, G.M. Compounding of distributions: A survey and new generalized classes. J. Stat. Distrib. Appl. 2016, 3, 13. [Google Scholar] [CrossRef]
- Yedlapalli, P.; Kishore, G.N.V.; Boulila, W.; Koubaa, A.; Mlaiki, N. Toward enhanced geological analysis: A novel approach based on transmuted semicircular distribution. Symmetry 2023, 15, 2030. [Google Scholar] [CrossRef]
- Shala, M.; Merovci, F. A New Three-Parameter Inverse Rayleigh Distribution: Simulation and Application to Real Data. Symmetry 2024, 16, 634. [Google Scholar] [CrossRef]
- El-Morshedy, M.; Alshammari, F.S.; Tyagi, A.; Elbatal, I.; Hamed, Y.S.; Eliwa, M.S. Bayesian and Frequentist Inferences on a Type I Half-Logistic Odd Fréchet Class of Distributions. Entropy 2020, 23, 446. [Google Scholar] [CrossRef]
- Merovci, F. A Three-Parameter Record-Based Transmuted Rayleigh Distribution (Order 3): Theory and Real-Data Applications. Symmetry 2025, 17, 1034. [Google Scholar] [CrossRef]
- Gómez, Y.M.; Gómez, H.W.; Arnold, B.C.; Gallardo, D.I. Gentransmuted: Estimation and Other Tools for Generalized Transmuted Models. R Package Version 1.0. 2025. Available online: https://CRAN.R-project.org/package=gentransmuted (accessed on 31 August 2025).
- Gupta, R.C.; Nadarajah, S. Handbook of Exponential and Related Distributions for Engineers and Scientists; Chapman and Hall: Boca Raton, FL, USA; CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
- Kumaraswamy, P. Generalized probability density function for double-bounded random processes. J. Hydrol. 1980, 462, 79–88. [Google Scholar] [CrossRef]
- Granzotto, D.C.T.; Louzada, F. The transmuted log-logistic distribution: Modeling, inference, and an application to a polled Tabapua race time up to first calving data. Comm. Statist. Theory Methods 2015, 44, 3387–3402. [Google Scholar] [CrossRef]
- Balakrishnan, N.; He, M. A record-based transmuted family of distributions. In Advances in Statistics—Theory and Applications; Emerging Topics in Statistics and Biostatistics; Springer: Cham, Switzerland, 2021; pp. 3–24. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 31 August 2025).
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Statist. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Andrews, D.F.; Herzberg, A.M. Data: A Collection of Problems from Many Fields for the Student and Research Worker; Springer Series in Statistics; Springer: New York, NY, USA, 1985. [Google Scholar]
- Barlow, R.E.; Tol, R.H.; Freeman, T. A Bayesian Analysis of Stress-Rupture Life of Kevlar 49/Epoxy Spherical Pressure Vessels; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]
- Dunn, P.K.; Smyth, G.K. Randomized Quantile Residuals. J. Comput. Graph. Stat. 1996, 5, 236–244. [Google Scholar] [CrossRef]
- Arnold, B.C. Pareto Distributions, 2nd ed.; Monographs on Statistics & Applied Probability; Chapman and Hall: Boca Raton, FL, USA; CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
Parameter | Bias | SE | RMSE | CP | Bias | SE | RMSE | CP | Bias | SE | RMSE | CP | Bias | SE | RMSE | CP | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
exp | EXP | 0.75 | 0.0257 | 0.2157 | 0.2142 | 0.9660 | 0.0203 | 0.1520 | 0.1568 | 0.9480 | 0.0094 | 0.0958 | 0.0950 | 0.9470 | 0.0001 | 0.0673 | 0.0671 | 0.9490 | |
0.0120 | 0.0955 | 0.1025 | 0.9480 | 0.0117 | 0.0675 | 0.0686 | 0.9590 | 0.0018 | 0.0420 | 0.0416 | 0.9460 | 0.0006 | 0.0296 | 0.0292 | 0.9560 | ||||
1.2 | 0.0295 | 0.1895 | 0.2049 | 0.9460 | 0.0180 | 0.1336 | 0.1407 | 0.9390 | 0.0065 | 0.0840 | 0.0878 | 0.9330 | 0.0045 | 0.0594 | 0.0623 | 0.9460 | |||
0.0395 | 0.1691 | 0.1818 | 0.9570 | 0.0169 | 0.1168 | 0.1254 | 0.9330 | 0.0079 | 0.0732 | 0.0760 | 0.9450 | 0.0018 | 0.0514 | 0.0548 | 0.9290 | ||||
MO | 0.75 | 0.0479 | 0.2773 | 0.2800 | 0.9640 | 0.0313 | 0.1949 | 0.1937 | 0.9550 | 0.0121 | 0.1225 | 0.1251 | 0.9490 | 0.0069 | 0.0866 | 0.0884 | 0.9390 | ||
0.0190 | 0.2636 | 0.2626 | 0.9290 | 0.0013 | 0.1811 | 0.1842 | 0.9270 | −0.0003 | 0.1141 | 0.1195 | 0.9390 | −0.0011 | 0.0805 | 0.0802 | 0.9380 | ||||
1.2 | 0.0787 | 0.3245 | 0.3379 | 0.9510 | 0.0243 | 0.2262 | 0.2207 | 0.9530 | 0.0065 | 0.1428 | 0.1401 | 0.9580 | 0.0144 | 0.1014 | 0.1038 | 0.9380 | |||
0.0021 | 0.4291 | 0.4373 | 0.9040 | 0.0093 | 0.3034 | 0.2974 | 0.9410 | 0.0098 | 0.1912 | 0.1905 | 0.9530 | −0.0050 | 0.1333 | 0.1355 | 0.9320 | ||||
lomax | EXP | 0.75 | 0.6423 | 1.6729 | 2.6414 | 0.9040 | 0.2681 | 0.8387 | 1.2363 | 0.9270 | 0.0652 | 0.4271 | 0.4358 | 0.9460 | 0.0407 | 0.2930 | 0.3009 | 0.9500 | |
0.3421 | 0.8386 | 1.3633 | 0.9540 | 0.1458 | 0.4310 | 0.6690 | 0.9430 | 0.0337 | 0.2228 | 0.2263 | 0.9560 | 0.0266 | 0.1543 | 0.1582 | 0.9590 | ||||
0.0335 | 0.1468 | 0.1568 | 0.9560 | 0.0151 | 0.0981 | 0.1008 | 0.9610 | 0.0067 | 0.0603 | 0.0617 | 0.9570 | 0.0029 | 0.0420 | 0.0421 | 0.9530 | ||||
1.2 | 0.5303 | 1.5624 | 2.3736 | 0.9190 | 0.2177 | 0.7583 | 0.9206 | 0.9240 | 0.0641 | 0.4179 | 0.4292 | 0.9430 | 0.0484 | 0.2894 | 0.2954 | 0.9580 | |||
0.2278 | 0.6538 | 0.8637 | 0.9470 | 0.1034 | 0.3402 | 0.3989 | 0.9510 | 0.0351 | 0.1916 | 0.1967 | 0.9590 | 0.0197 | 0.1322 | 0.1354 | 0.9540 | ||||
0.0830 | 0.3348 | 0.4378 | 0.9460 | 0.0475 | 0.2060 | 0.2315 | 0.9580 | 0.0203 | 0.1226 | 0.1257 | 0.9530 | 0.0010 | 0.0840 | 0.0849 | 0.9380 | ||||
MO | 0.75 | 3.1732 | 20.4146 | 10.7486 | 0.7740 | 2.7826 | 13.7290 | 9.3956 | 0.8350 | 1.4785 | 4.7245 | 5.4535 | 0.8660 | 0.6240 | 1.6506 | 2.7094 | 0.9080 | ||
1.1341 | 6.5481 | 3.6415 | 0.8610 | 0.8624 | 3.8626 | 2.8222 | 0.8890 | 0.4458 | 1.4021 | 1.6413 | 0.9090 | 0.1898 | 0.5319 | 0.8247 | 0.9270 | ||||
0.1985 | 1.4926 | 1.1686 | 0.7740 | 0.2698 | 1.1727 | 1.0963 | 0.8370 | 0.2248 | 0.7068 | 0.8002 | 0.8750 | 0.1183 | 0.4460 | 0.5300 | 0.9190 | ||||
1.2 | 1.7273 | 15.9685 | 7.6485 | 0.7410 | 2.7101 | 13.8727 | 10.2085 | 0.8090 | 1.8809 | 6.2679 | 6.6841 | 0.8760 | 0.9451 | 2.2279 | 3.1213 | 0.9090 | |||
0.8000 | 6.4471 | 3.4778 | 0.8420 | 0.9262 | 4.5438 | 3.3413 | 0.8760 | 0.6013 | 1.9553 | 2.1356 | 0.9140 | 0.3026 | 0.7342 | 1.0447 | 0.9300 | ||||
0.0074 | 2.2946 | 1.4724 | 0.7370 | 0.2626 | 1.8469 | 1.6898 | 0.8140 | 0.3724 | 1.2424 | 1.2641 | 0.8850 | 0.2749 | 0.8125 | 0.9642 | 0.9110 |
n | Median | Mean | Variance | CS | CK |
---|---|---|---|---|---|
76 | 1.736 | 1.959 | 2.477 | 2.019 | 8.600 |
Parameter | Estimate | SE |
---|---|---|
AIC | ||
BIC |
n | Median | Mean | Variance | CS | CK |
---|---|---|---|---|---|
500 | 21.125 | 216.709 | 11,270,001 | 22.176 | 494.470 |
Estimates | Pareto II | ||||
---|---|---|---|---|---|
− | − | ||||
− | − | ||||
AIC | |||||
BIC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnold, B.C.; Gómez, Y.M.; Gallardo, D.I.; Gómez, H.W. On Doubly-Generalized-Transmuted Distributions. Symmetry 2025, 17, 1606. https://doi.org/10.3390/sym17101606
Arnold BC, Gómez YM, Gallardo DI, Gómez HW. On Doubly-Generalized-Transmuted Distributions. Symmetry. 2025; 17(10):1606. https://doi.org/10.3390/sym17101606
Chicago/Turabian StyleArnold, Barry C., Yolanda M. Gómez, Diego I. Gallardo, and Héctor W. Gómez. 2025. "On Doubly-Generalized-Transmuted Distributions" Symmetry 17, no. 10: 1606. https://doi.org/10.3390/sym17101606
APA StyleArnold, B. C., Gómez, Y. M., Gallardo, D. I., & Gómez, H. W. (2025). On Doubly-Generalized-Transmuted Distributions. Symmetry, 17(10), 1606. https://doi.org/10.3390/sym17101606