A Nonconvex Fractional Regularization Model in Robust Principal Component Analysis via the Symmetric Alternating Direction Method of Multipliers
Abstract
1. Introduction
1.1. Related Work
1.2. Problem Description
1.3. Our Contribution
- We propose a new rank approximation model for the RPCA. Compared with the existing nonconvex models, this model not only circumvents the parameter restriction, but also exhibits superior performance in terms of approximating the rank.
- We employ the SADMM to solve the proposed model, and prove the convergence of the algorithm under mild conditions.
- We conduct experiments using both synthetic and real-world data. The experimental results demonstrate the superiority of the proposed algorithm and model.
2. Algorithm
- (1)
- Solving the X-subproblem: For the variables , , and , and we introduce an auxiliary variable N to reformulate the X-subproblem, which is described as follows:
- (2)
- Solving the Y-subproblem: For the variables , , and ,
- (3)
- Solving the Z-subproblem: For the variables , , and ,
Algorithm 1 SADMM for solving (7) |
3. Convergence
3.1. Preliminaries
3.2. Convergence
4. Numerical Results
4.1. Synthetic Data
4.2. Image Recovery
4.3. Foreground and Background Separation in Surveillance Video
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Candès, E.J.; Li, X.D.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 11. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Z.; Chen, Q.; Chen, W. Robust principal component analysis via truncated L1−2 minimization. In Proceedings of the 2023 International Joint Conference on Neural Networks, Gold Coast, Australia, 18–23 June 2023; pp. 1–9. [Google Scholar] [CrossRef]
- Bian, J.T.; Zhao, D.D.; Nie, F.P.; Wang, R.; Li, X.L. Robust and sparse principal component analysis with adaptive loss minimization for feature selection. IEEE T. Neur. Net. Lear. 2022, 35, 3601–3614. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.S.; Han, D.R.; Zhang, W.X. A customized inertial proximal alternating minimization for SVD-free robust principal component analysis. Optimization 2023, 73, 2387–2412. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, H.Y.; Liu, X. An alternating minimization method for robust principal component analysis. Optim. Method Softw. 2018, 34, 1251–1276. [Google Scholar] [CrossRef]
- Zhuang, S.T.; Wang, Q.W.; Chen, J.F. Dual graph Laplacian RPCA method for face recognition based on anchor points. Symmetry 2025, 17, 691. [Google Scholar] [CrossRef]
- Zhang, W.T.; Chen, X.H. Robust discriminative non-negative and symmetric low-rank projection learning for feature extraction. Symmetry 2025, 17, 307. [Google Scholar] [CrossRef]
- Wright, J.; Peng, Y.G.; Ma, Y.; Ganesh, A.; Rao, S. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Proceedings of the 23rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; pp. 2080–2088. Available online: https://dl.acm.org/doi/abs/10.5555/2984093.2984326 (accessed on 13 July 2025).
- Tao, M.; Yuan, X.M. Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 2011, 21, 57–81. [Google Scholar] [CrossRef]
- Fan, J.Q.; Li, R.Z. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T. Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 2010, 11, 1081–1107. Available online: https://dl.acm.org/doi/10.5555/1756006.1756041 (accessed on 13 July 2025).
- Candès, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted ℓ1 minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Friedman, J.H. Fast sparse regression and classification. Int. J. Forecasting 2012, 28, 722–738. [Google Scholar] [CrossRef]
- Nie, F.P.; Huang, H.; Ding, C. Low-rank matrix recovery via efficient schatten p-norm minimization. In Proceedings of the 26-th AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012; pp. 655–661. Available online: https://dl.acm.org/doi/10.5555/2900728.2900822 (accessed on 13 July 2025).
- Li, X.L.; Zhang, H.Y.; Zhang, R. Matrix completion via non-convex relaxation and adaptive correlation learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.X.; Wang, N.Y.; Yu, Q.; Zhang, Z.H. A feasible nonconvex relaxation approach to feature selection. In Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011; pp. 356–361. [Google Scholar] [CrossRef]
- Geman, D.; Yang, C.D. Nonlinear image recovery with half-quadratic regularization. IEEE T. Image Process. 1995, 4, 932–946. [Google Scholar] [CrossRef] [PubMed]
- Trzasko, J.; Manduca, A. Highly undersampled magnetic resonance image reconstruction via homotopy ℓ0-minimization. IEEE T. Med. Imaging 2009, 28, 106–121. [Google Scholar] [CrossRef]
- Gao, K.X.; Huang, Z.H.; Guo, L.L. Low-rank matrix recovery problem minimizing a new ratio of two norms approximating the rank function then using an ADMM-type solver with applications. J. Comput. Appl. Math. 2024, 438, 115564. [Google Scholar] [CrossRef]
- Rahimi, Y.; Wang, C.; Dong, H.B.; Lou, Y.F. A scale-invariant approach for sparse signal recovery. SIAM J. Sci. Comput. 2019, 41, A3649–A3672. [Google Scholar] [CrossRef]
- Wang, C.; Yan, M.; Rahimi, Y.; Lou, Y.F. Accelerated schemes for the L1/L2 minimization. IEEE Trans. Signal Process. 2020, 68, 2660–2669. [Google Scholar] [CrossRef]
- Tao, M. Minimization of L1 over L2 for sparse signal recovery with convergence guarantee. SIAM J. Sci. Comput. 2022, 44, A770–A797. [Google Scholar] [CrossRef]
- Hurley, N.; Rickard, S. Comparing measures of sparsity. IEEE T. Inform. Theory 2009, 55, 4723–4741. [Google Scholar] [CrossRef]
- Yin, P.H.; Esser, E.; Xin, J. Ratio and difference of l1 and l2 norms and sparse representation with coherent dictionaries. Commun. Inf. Syst. 2014, 14, 87–109. [Google Scholar] [CrossRef]
- Wang, C.; Tao, M.; Nagy, J.G.; Lou, Y.F. Limited-angle CT reconstruction via the L1/L2 minimization. SIAM J. Imaging Sci. 2021, 14, 749–777. [Google Scholar] [CrossRef]
- Wang, C.; Tao, M.; Chuah, C.N.; Nagy, J.G.; Lou, Y.F. Minimizing L1 over L2 norms on the gradient. Inverse Probl. 2022, 38, 065011. [Google Scholar] [CrossRef]
- Wu, Z.M.; Li, M.; Wang, D.Z.W.; Han, D.R. A symmetric alternating direction method of multipliers for separable nonconvex minimization problems. Asia. Pac. J. Oper. Res. 2017, 34, 1750030. [Google Scholar] [CrossRef]
- Rockafellar, R.T.; Wets, R.J.B. Variational Analysis; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Bolte, J.; Sabach, S.; Teboulle, M. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 2014, 146, 459–494. [Google Scholar] [CrossRef]
- Attouch, H.; Bolte, J.; Svaiter, B.F. Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward−backward splitting, and regularized Gauss−Seidel methods. Math. Program. 2013, 137, 91–129. [Google Scholar] [CrossRef]
- Guo, K.; Han, D.R.; Wu, T.T. Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. Int. J. Comput. Math. 2016, 94, 1653–1669. [Google Scholar] [CrossRef]
- Ge, Z.L.; Zhang, X.; Wu, Z.M. A fast proximal iteratively reweighted nuclear norm algorithm for nonconvex low-rank matrix minimization problems. Appl. Numer. Math. 2022, 179, 66–86. [Google Scholar] [CrossRef]
- Ge, Z.L.; Wu, Z.M.; Zhang, X.; Ni, Q. An extrapolated proximal iteratively reweighted method for nonconvex composite optimization problems. J. Glob. Optim. 2023, 86, 821–844. [Google Scholar] [CrossRef]
- Ge, Z.L.; Zhang, S.Y.; Zhang, X.; Cui, Y. A new proximal iteratively reweighted nuclear norm method for nonconvex nonsmooth optimization problems. Mathematics 2025, 13, 2630. [Google Scholar] [CrossRef]
- Phan, D.N.; Nguyen, T.N. An accelerated IRNN-Iteratively Reweighted Nuclear Norm algorithm for nonconvex nonsmooth low-rank minimization problems. J. Comput. Appl. Math. 2021, 396, 113602. [Google Scholar] [CrossRef]
- Cai, J.F.; Candès, E.J.; Shen, Z.W. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Giampouras, P.; Cai, H.Q.; Vidal, R. Guarantees of a preconditioned subgradient algorithm for overparameterized asymmetric low-rank matrix recovery. arXiv 2025, arXiv:2410.16826. [Google Scholar] [CrossRef]
- Jiang, F.; Lu, B.Y.; Wu, Z.M. Revisiting parallel splitting augmented Lagrangian method: Tight convergence and ergodic convergence rate. CSIAM T. Appl. Math. 2024, 5, 884–913. [Google Scholar] [CrossRef]
- He, B.S.; Ma, F.; Yuan, X.M. Optimal proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems. IMA J. Numer. Anal. 2020, 40, 1188–1216. [Google Scholar] [CrossRef]
with parameters , and | |
SCAD [10] | |
MCP [11] | |
Clapped [12] | |
LSP [13] | |
Logarithm [14] | |
Sp [15] | |
SCp [16] | |
ETP [17] | |
Geman [18] | |
Laplace [19] |
−0.5 | −0.3 | 0 | 0.3 | 0.5 | 0.7 | 0.9 | |
---|---|---|---|---|---|---|---|
Time | 9.61 | 7.63 | 6.05 | 4.88 | 4.38 | 5.31 | 10.63 |
Iter. | 156 | 114 | 85 | 71 | 63 | 77 | 154 |
RE |
Images | AIRNN | SVT | SCp | SADMM | ||||
---|---|---|---|---|---|---|---|---|
SNR | RE | SNR | RE | SNR | RE | SNR | RE | |
Tower | 16.50 | 0.1915 | 21.98 | 0.1318 | 13.33 | 0.2003 | 23.13 | 0.1084 |
Sky | 25.97 | 0.1083 | 23.94 | 0.1200 | 29.32 | 0.0831 | 30.70 | 0.0770 |
Spillikins | 18.16 | 0.1129 | 16.21 | 0.1402 | 19.61 | 0.1024 | 25.13 | 0.0649 |
Texture | 19.19 | 0.1943 | 18.74 | 0.1978 | 19.94 | 0.1677 | 20.62 | 0.1462 |
Average | 19.95 | 0.1517 | 20.21 | 0.1474 | 20.55 | 0.1383 | 24.89 | 0.0991 |
Video Name | Resolution | The Number of Frames |
---|---|---|
Restaurant | 200 | |
Shopping Mall | 400 |
Method | Rank() | |||||
---|---|---|---|---|---|---|
Restaurant | Shopping Mall | Restaurant | Shopping Mall | Restaurant | Shopping Mall | |
Alg1d | 18 | 20 | 551,326 | 2,698,367 | ||
Alg1c | 18 | 20 | 548,238 | 2,804,602 | ||
OPALM | 18 | 20 | 526,557 | 2,795,618 | ||
SADMM | 18 | 20 | 561,197 | 2,818,965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Z.; Zhang, S.; Zhang, X.; Xu, Y. A Nonconvex Fractional Regularization Model in Robust Principal Component Analysis via the Symmetric Alternating Direction Method of Multipliers. Symmetry 2025, 17, 1590. https://doi.org/10.3390/sym17101590
Ge Z, Zhang S, Zhang X, Xu Y. A Nonconvex Fractional Regularization Model in Robust Principal Component Analysis via the Symmetric Alternating Direction Method of Multipliers. Symmetry. 2025; 17(10):1590. https://doi.org/10.3390/sym17101590
Chicago/Turabian StyleGe, Zhili, Siyu Zhang, Xin Zhang, and Yingying Xu. 2025. "A Nonconvex Fractional Regularization Model in Robust Principal Component Analysis via the Symmetric Alternating Direction Method of Multipliers" Symmetry 17, no. 10: 1590. https://doi.org/10.3390/sym17101590
APA StyleGe, Z., Zhang, S., Zhang, X., & Xu, Y. (2025). A Nonconvex Fractional Regularization Model in Robust Principal Component Analysis via the Symmetric Alternating Direction Method of Multipliers. Symmetry, 17(10), 1590. https://doi.org/10.3390/sym17101590