General Relativistic Stability and Gravitational Wave Content of Rotating Triaxial Neutron Stars
Abstract
1. Introduction
2. Numerical Methods and Model Parameters
2.1. Initial Data
2.2. Evolutions
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The LIGO Scientific Collaboration; The Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Properties of the Binary Black Hole Merger GW150914. Phys. Rev. Lett. 2016, 116, 241102. [Google Scholar] [CrossRef] [PubMed]
- Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Advanced LIGO. Class. Quant. Grav. 2015, 32, 074001. [Google Scholar] [CrossRef]
- Acernese, F.A.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allem, O.N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quant. Grav. 2015, 32, 024001. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4M⊙. Astrophys. J. Lett. 2020, 892, L3. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Observation of Gravitational Waves from Two Neutron Star—Black Hole Coalescences. Astrophys. J. Lett. 2021, 915, L5. [Google Scholar] [CrossRef]
- Haskell, B.; Andersson, N.; D‘Angelo, C.; Degenaar, N.; Glampedakis, K.; Ho, W.C.; Lasky, P.D.; Melatos, A.; Oppenoorth, M.; Patruno, A.; et al. Gravitational waves from rapidly rotating neutron stars. Astrophys. Space Sci. Proc. 2015, 40, 85–102. [Google Scholar] [CrossRef]
- Riles, K. Searches for continuous-wave gravitational radiation. Living Rev. Rel. 2023, 26, 3. [Google Scholar] [CrossRef]
- Pagliaro, G.; Papa, M.A.; Ming, J.; Lian, J.; Tsuna, D.; Maraston, C.; Thomas, D. Continuous Gravitational Waves from Galactic Neutron Stars: Demography, Detectability, and Prospects. Astrophys. J. 2023, 952, 123. [Google Scholar] [CrossRef]
- Wette, K. Searches for continuous gravitational waves from neutron stars: A twenty-year retrospective. Astropart. Phys. 2023, 153, 102880. [Google Scholar] [CrossRef]
- Friedman, J.L.; Stergioulas, N. Rotating Relativistic Stars; Cambridge University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Baumgarte, T.W.; Shapiro, S.L. Numerical Relativity: Solving Einstein’s Equations on the Computer; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Ellipsoidal Figures of Equilibrium; The Silliman Foundation Lectures; Yale University Press: New Haven, CT, USA, 1969. [Google Scholar]
- Shibata, M.; Karino, S.; Eriguchi, Y. Dynamical instability of differentially rotating stars. Mon. Not. R. Astron. Soc. 2002, 334, L27. [Google Scholar] [CrossRef]
- Shibata, M.; Karino, S.; Eriguchi, Y. Dynamical bar-mode instability of differentially rotating stars: Effects of equations of state and velocity profiles. Mon. Not. R. Astron. Soc. 2003, 343, 619. [Google Scholar] [CrossRef]
- Watts, A.L.; Andersson, N.; Jones, D.I. The Nature of Low T/|W| Dynamical Instabilities in Differentially Rotating Stars. Astrophys. J. Lett. 2005, 618, L37–L40. [Google Scholar] [CrossRef]
- Roberts, P.H.; Stewartson, K. On the Stability of a Maclaurin Spheroid of Small Viscosity. Astrophys. J. 1963, 137, 777. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Solutions of Two Problems in the Theory of Gravitational Radiation. Phys. Rev. Lett. 1970, 24, 611–615. [Google Scholar] [CrossRef]
- Friedman, J.L.; Schutz, B.F. Secular instability of rotating Newtonian stars. Astrophys. J. 1978, 222, 281–296. [Google Scholar] [CrossRef]
- Friedman, J.L. Generic instability of rotating relativistic stars. Commun. Math. Phys. 1978, 62, 247–278. [Google Scholar] [CrossRef]
- Lai, D.; Rasio, F.A.; Shapiro, S.L. Ellipsoidal figures of equilibrium—Compressible models. Astrophys. J. Suppl. Ser. 1993, 88, 205–252. [Google Scholar] [CrossRef]
- Lai, D.; Shapiro, S.L. Gravitational radiation from rapidly rotating nascent neutron stars. Astrophys. J. 1995, 442, 259–272. [Google Scholar] [CrossRef]
- Christodoulou, D.M.; Kazanas, D.; Shlosman, I.; Tohline, J.E. Phase-Transition Theory of Instabilities. I. Second-Harmonic Instability and Bifurcation Points. Astrophys. J. 1995, 446, 472. [Google Scholar] [CrossRef]
- Lindblom, L.; Detweiler, S.L. On the secular instabilities of the Maclaurin spheroids. Astrophys. J. 1977, 211, 565–567. [Google Scholar] [CrossRef]
- James, R.A. The Structure and Stability of Rotating Gas Masses. Astrophys. J. 1964, 140, 552. [Google Scholar] [CrossRef]
- Ipser, J.R.; Managan, R.A. On the existence and structure of inhomogeneous analogs of the Dedekind and Jacobi ellipsoids. Astrophys. J. 1981, 250, 362–372. [Google Scholar] [CrossRef]
- Bonazzola, S.; Frieben, J.; Gourgoulhon, E. Spontaneous Symmetry Breaking of Rapidly Rotating Stars in General Relativity. Astrophys. J. 1996, 460, 379. [Google Scholar] [CrossRef]
- Skinner, D.; Lindblom, L. On the Viscosity-driven Secular Instability in Rotating Neutron Stars. Astrophys. J. 1996, 461, 920. [Google Scholar] [CrossRef]
- Bonazzola, S.; Frieben, J.; Gourgoulhon, E. Spontaneous symmetry breaking of rapidly rotating stars in general relativity: Influence of the 3D-shift vector. Astron. Astrophys. 1998, 331, 280–290. [Google Scholar]
- Gondek-Rosińska, D.; Gourgoulhon, E. Jacobi-like bar mode instability of relativistic rotating bodies. Phys. Rev. D 2002, 66, 044021. [Google Scholar] [CrossRef]
- Stergioulas, N.; Friedman, J.L. Nonaxisymmetric Neutral Modes in Rotating Relativistic Stars. Astrophys. J. 1998, 492, 301. [Google Scholar] [CrossRef]
- Morsink, S.M.; Stergioulas, N.; Blattnig, S.R. Quasi-normal Modes of Rotating Relativistic Stars – Neutral Modes for Realistic Equations of State. Astrophys. J. 1999, 510, 854. [Google Scholar] [CrossRef]
- Huang, X.; Markakis, C.; Sugiyama, N.; Uryū, K. Quasi-equilibrium models for triaxially deformed rotating compact stars. Phys. Rev. D 2008, D78, 124023. [Google Scholar] [CrossRef]
- Uryū, K.; Tsokaros, A.; Galeazzi, F.; Hotta, H.; Sugimura, M.; Taniguchi, K.; Yoshida, S. New code for equilibriums and quasiequilibrium initial data of compact objects. III. Axisymmetric and triaxial rotating stars. Phys. Rev. D 2016, D93, 044056. [Google Scholar] [CrossRef]
- Uryū, K.; Tsokaros, A.; Baiotti, L.; Galeazzi, F.; Sugiyama, N.; Taniguchi, K.; Yoshida, S. Do triaxial supramassive compact stars exist? Phys. Rev. D 2016, 94, 101302. [Google Scholar] [CrossRef]
- Cook, G.B.; Shapiro, S.L.; Teukolsky, S.A. Spin-up of a rapidly rotating star by angular momentum loss—Effects of general relativity. Astrophys. J. 1992, 398, 203–223. [Google Scholar] [CrossRef]
- Tsokaros, A.; Ruiz, M.; Paschalidis, V.; Shapiro, S.L.; Baiotti, L.; Uryū, K. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity. Phys. Rev. D 2017, 95, 124057. [Google Scholar] [CrossRef]
- Zhou, E.; Tsokaros, A.; Rezzolla, L.; Xu, R.; Uryū, K. Uniformly rotating, axisymmetric and triaxial quark stars in general relativity. Phys. Rev. 2018, D97, 023013. [Google Scholar] [CrossRef]
- Brandt, S.R.; Brendal, B.; Gabella, W.E.; Haas, R.; Karakaş, B.; Kedia, A.; Rosofsky, S.G.; Schaffarczyk, A.P.; Alcubierre, M.; Alic, D.; et al. The Einstein Toolkit, Turing release, ET_2020_05 2020; Zenodo: Geneva, Switzerland, 2020. [CrossRef]
- Etienne, Z.B.; Paschalidis, V.; Haas, R.; Mösta, P.; Shapiro, S.L. IllinoisGRMHD: An open-source, user-friendly GRMHD code for dynamical spacetimes. Class. Quantum Grav. 2015, 32, 175009. [Google Scholar] [CrossRef]
- Noble, S.C.; Gammie, C.F.; McKinney, J.C.; Del Zanna, L. Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics. Astrophys. J. 2006, 641, 626–637. [Google Scholar] [CrossRef]
- Schnetter, E.; Hawley, S.H.; Hawke, I. Evolutions in 3D numerical relativity using fixed mesh refinement 2003. Class. Quantum Gravity 2004, 21, 1465. [Google Scholar] [CrossRef]
- Dreyer, O.; Krishnan, B.; Shoemaker, D.; Schnetter, E. Introduction to isolated horizons in numerical relativity. Phys. Rev. D 2003, 67, 024018. [Google Scholar] [CrossRef]
- Tsokaros, A.; Uryū, K. Methods for relativistic self-gravitating fluids: From binary neutron stars to black hole-disks and magnetized rotating neutron stars. Gen. Relativ. Gravit. 2022, 54, 52. [Google Scholar] [CrossRef]
- Isenberg, J.A. Waveless Approximation Theories of Gravity. Int. J. Mod. Phys. 2008, 17, 265–273. [Google Scholar] [CrossRef]
- Wilson, J.R.; Mathews, G.J. Relativistic hydrodynamics. In Frontiers in Numerical Relativity; Evans, C.R., Finn, L.S., Hobill, D.W., Eds.; Cambridge University Press: Cambridge, MA, USA, 1989; pp. 306–314. [Google Scholar]
- Wilson, J.R.; Mathews, G.J. Instabilities in Close Neutron Star Binaries. Phys. Rev. Lett. 1995, 75, 4161. [Google Scholar] [CrossRef]
- Wilson, J.R.; Mathews, G.J.; Marronetti, P. Relativistic numerical model for close neutron-star binaries. Phys. Rev. D 1996, 54, 1317–1331. [Google Scholar] [CrossRef]
- Friedman, J.L.; Ipser, J.R.; Parker, L. Rapidly Rotating Neutron Star Models. Astrophys. J. 1986, 304, 115. [Google Scholar] [CrossRef]
- Beig, R. Arnowitt-Deser-Misner energy and g00. Phys. Lett. A 1978, 69, 153–155. [Google Scholar] [CrossRef]
- Gourgoulhon, E.; Bonazzola, S. A formulation of the virial theorem in general relativity. Class. Quantum Gravity 1994, 11, 443–452. [Google Scholar] [CrossRef]
- Komatsu, H.; Eriguchi, Y.; Hachisu, I. Rapidly rotating general relativistic stars. I - Numerical method and its application to uniformly rotating polytropes. Mon. Not. R. Astron. Soc. 1989, 237, 355–379. [Google Scholar] [CrossRef]
- Komatsu, H.; Eriguchi, Y.; Hachisu, I. Rapidly rotating general relativistic stars. II – Differentially rotating polytropes. Mon. Not. R. Astron. Soc. 1989, 239, 153–171. [Google Scholar] [CrossRef]
- Ruchlin, I.; Etienne, Z.B.; Baumgarte, T.W. SENR/NRPy+: Numerical Relativity in Singular Curvilinear Coordinate Systems. Phys. Rev. 2018, D97, 064036. [Google Scholar] [CrossRef]
- Baker, J.G.; Centrella, J.; Choi, D.I.; Koppitz, M.; van Meter, J. Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 2006, 96, 111102. [Google Scholar] [CrossRef]
- Campanelli, M.; Lousto, C.O.; Marronetti, P.; Zlochower, Y. Accurate Evolutions of Orbiting Black-Hole Binaries without Excision. Phys. Rev. Lett. 2006, 96, 111101. [Google Scholar] [CrossRef]
- Alcubierre, M.; Brügmann, B.; Diener, P.; Koppitz, M.; Pollney, D.; Seidel, E.; Takahashi, R. Gauge conditions for long-term numerical black hole evolutions without excision. Phys. Rev. D 2003, 67, 084023. [Google Scholar] [CrossRef]
- Del Zanna, L.; Bucciantini, N. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. Hydrodynamics. Astron. Astrophys. 2002, 390, 1177–1186. [Google Scholar] [CrossRef]
- Reisswig, C.; Pollney, D. Notes on the integration of numerical relativity waveforms. Class. Quantum Grav. 2011, 28, 195015. [Google Scholar] [CrossRef]
- Updated Advanced LIGO Sensitivity Design Curve, LIGO Document T1800044-v5. 2023. Available online: https://dcc.ligo.org/LIGO-T1800044-v5/public (accessed on 4 March 2024).
- ET-B Sensitivity Curve, 2023. ET Document ET-0002A-18. Available online: https://apps.et-gw.eu/tds/ql/?c=13222 (accessed on 4 March 2024).
- Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G.D.; et al. XSEDE: Accelerating Scientific Discovery. Comput. Sci. Eng. 2014, 16, 62–74. [Google Scholar] [CrossRef]
- Boerner, T.J.; Deems, S.; Furlani, T.R.; Knuth, S.L.; Towns, J. ACCESS: Advancing Innovation: NSF’s Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support. In Proceedings of the In Practice and Experience in Advanced Research Computing (PEARC ’23), ACM, Portland, OR, USA, 23–27 July 2023; p. 4. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Caswell, T.A.; Droettboom, M.; Lee, A.; de Andrade, E.S.; Hoffmann, T.; Hunter, J.; Klymak, J.; Firing, E.; Stansby, D.; Varoquaux, N.; et al. matplotlib, v3.4.3; Zenodo: Geneva, Switzerland, 2021. [CrossRef]
- Bozzola, G. kuibit: Analyzing Einstein Toolkit simulations with Python. J. Open Source Softw. 2021, 6, 3099. [Google Scholar] [CrossRef]
Model | e | |||||
---|---|---|---|---|---|---|
C010s17 | ||||||
C019s08 | ||||||
Model | ||||||
C010s17 | ||||||
C019s08 |
: Radial coordinate where the radial grids start. | |
: Radial coordinate where the radial grids end. | |
: Radial coordinate between and where the radial grid spacing changes. | |
: Number of intervals in . | |
: Number of intervals in . | |
: Number of intervals in . | |
: Number of intervals in . | |
: Number of intervals in . | |
: Order of included multipoles. |
Model | Grid Hierarchy | N | |
---|---|---|---|
C010s17 | 80 | ||
C019s08 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Tsokaros, A.; Haas, R.; Uryū, K. General Relativistic Stability and Gravitational Wave Content of Rotating Triaxial Neutron Stars. Symmetry 2024, 16, 343. https://doi.org/10.3390/sym16030343
Luo Y, Tsokaros A, Haas R, Uryū K. General Relativistic Stability and Gravitational Wave Content of Rotating Triaxial Neutron Stars. Symmetry. 2024; 16(3):343. https://doi.org/10.3390/sym16030343
Chicago/Turabian StyleLuo, Yufeng, Antonios Tsokaros, Roland Haas, and Kōji Uryū. 2024. "General Relativistic Stability and Gravitational Wave Content of Rotating Triaxial Neutron Stars" Symmetry 16, no. 3: 343. https://doi.org/10.3390/sym16030343
APA StyleLuo, Y., Tsokaros, A., Haas, R., & Uryū, K. (2024). General Relativistic Stability and Gravitational Wave Content of Rotating Triaxial Neutron Stars. Symmetry, 16(3), 343. https://doi.org/10.3390/sym16030343