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Abstract: Triaxial neutron stars can be sources of continuous gravitational radiation detectable
by ground-based interferometers. The amplitude of the emitted gravitational wave can be greatly
affected by the state of the hydrodynamical fluid flow inside the neutron star. In this work, we
examine the most triaxial models along two sequences of constant rest mass, confirming their
dynamical stability. We also study the response of a triaxial figure of quasiequilibrium under a variety
of perturbations that lead to different fluid flows. Starting from the general relativistic compressible
analog of the Newtonian Jacobi ellipsoid, we perform simulations of Dedekind-type flows. We find
that in some cases the triaxial neutron star resembles a Riemann-S-type ellipsoid with minor rotation
and gravitational wave emission as it evolves towards axisymmetry. The present results highlight the
importance of understanding the fluid flow in the interior of a neutron star in terms of its gravitational
wave content.

Keywords: neutron stars; stability; gravitational waves

1. Introduction

One of the most profound predictions of general relativity is that a system which
possesses time-varying multipole moments higher than a quadrupole generates gravi-
tational waves. The most common systems that satisfy such criterion are the ones that
are not symmetric about their rotation axis, with prime examples being those of binary
compact objects. Therefore, it is not a surprise that the first direct detection of a gravita-
tional wave came from a binary black hole [1,2]. In the first three observational periods
(O1–O3), the LIGO/Virgo [3,4] collaboration discovered gravitational waves from almost
100 binaries [5–7], including two binary neutron stars [8–11] and two black hole–neutron
star mergers [12]. Another exciting possibility is to detect gravitational waves from a single
neutron star that exhibits some kind of asymmetry [13–16]. Although such gravitational
waves are much weaker than the ones emerging from a binary system (and this is one of
the reasons that they have not been detected yet), they have the potential of providing
important information regarding the nature of a neutron star, such as regarding various
fluid instabilities or its elastic, thermal, and magnetic characteristics.

A hydrodynamical instability is one well-known mechanism that can produce nonax-
isymmetric neutron stars which emit gravitational waves [17]. One important parameter
that characterizes unstable rotating neutron stars is β := T/|W|, where T is the rotational
kinetic energy and |W| the gravitational binding energy [17,18]. As the rotation of the star
increases, there are two critical points (nonaxisymmetric instabilities) that are associated
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with two different physical mechanisms. In the presence of some dissipative mechanism
such as viscosity or gravitational radiation, at β = βs, the star becomes secularly unstable
to a bar mode deformation. The timescale of this instability is set by the dissipation and
is much longer than the dynamical (free-fall) timescale. At even higher rotation rates,
when β = βd > βs, the star becomes dynamically unstable to a bar mode deformation.
This instability emerges regardless of any possible dissipation, and its growth is set by the
dynamical timescale. For incompressible stars in Newtonian gravity, βNewt

s = 0.1375 and
βNewt

d = 0.2738 [19]. Although the values of β at these critical points can change in general
relativity, with compressible equations of state and differential rotation, the overall idea (the
existence of distinct secular and dynamical instability points) remains (Nonaxisymmetric
instabilities for values of β as low as 0.01 have also been found [20,21]. These so-called
shear instabilities depend on β and the degree of differential rotation [22]).

The broadbrush picture above can be further refined by the fact that there are two cate-
gories of secular instabilities: (i) the viscosity-driven instability which, as the name suggests,
manifests itself in the presence of viscous dissipation [23] and (ii) the Chandrasekhar–
Friedman–Schutz (CFS) instability which is driven by a gravitational radiation
reaction [24–26]. For Newtonian incompressible fluids, an axisymmetric rotating body is
described by a Maclaurin spheroid [19], an oblate spheroid having Rx = Ry ̸= Rz. At the
point of secular instability, when β = 0.1375, two families of triaxial (Rx ̸= Ry ̸= Rz)
solutions emerge: (a) the Jacobi ellipsoids, which are uniform rotating ellipsoidal figures of
equilibrium in the inertial frame and thus emit gravitational waves, and (b) the Dedekind
ellipsoids, which are ellipsoidal figures of equilibrium stationary in the inertial frame
and therefore do not emit gravitational waves (this does not mean that the evolution
along the Dedekind sequence does not produce gravitational waves).The Dedekind ellip-
soids have constant vorticity and nonzero internal fluid circulation. Equilibrium solutions
(a) and (b) are related to the processes (i) and (ii), respectively, as follows [27–29]. Viscosity
dissipates mechanical energy but conserves angular momentum, and a Jacobi ellipsoid has
less mechanical energy, T + W, than a Maclaurin spheroid of the same rest mass and angu-
lar momentum. Thus, the viscous-driven evolution (i) of an unstable Maclaurin spheroid
would proceed towards a Jacobi ellipsoid (a). On the other hand, gravitational radiation
preserves circulation along any closed path on a plane parallel to the equator, but not
angular momentum. A Dedekind ellipsoid has less mechanical energy than a Maclaurin
spheroid of the same rest mass and circulation. Thus, in the absence of viscosity, the CFS-
driven (ii) evolution of an unstable Maclaurin spheroid would proceed towards a Dedekind
ellipsoid (b). The presence of both viscosity and gravitational radiation tends to stabilize
the star against these competing mechanisms [30]. In the limit where the gravitational
wave timescale equals the viscous timescale, the Maclaurin spheroid is secularly stable all
the way to the dynamical instability point.

One important difference between the viscosity-driven instability and the CFS instabil-
ity is that the latter is generic while the former is absent in sufficiently slowly rotating stars.
In addition, the viscosity-driven instability emerges only for sufficiently stiff equations
of state in which the bifurcation point exists before the mass-shedding (Keplerian) limit.
In Newtonian gravity, with a polytropic equation of state, p = kρΓ, the triaxial sequence
exists only if Γ ⪆ 2.24 [31]. In general relativity, the critical adiabatic index does not change
significantly but slightly increases to ∼2.4 [32–35]. At the same time, the critical parameter
βs also increases relative to the Newtonian value (0.1375) by a factor that depends on
the compactness of the neutron star [36]. On the other hand, the CFS instability becomes
stronger in general relativity and sets in at β < 0.1375 [37,38] so that the two instabilities
no longer occur at the same value of βs.

Sequences of triaxial solutions in general relativity were investigated
in [39–41] using a select set of stiff equations of state. It was found that the triaxial se-
quence becomes shorter (a smaller deformation is allowed) as the compactness increases,
while supramassive [42] triaxial equilibria are possible, depending on the equation of state.
In [43], the first full general relativistic simulations of triaxial uniformly rotating neutron
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stars were performed, and the dynamical stability of certain normal and supramassive
solutions was established. It was found that all triaxial models evolve toward axisymmetry,
maintaining their uniform rotation, while losing their triaxiality through gravitational wave
emission. Similar results were reported in [44] where triaxial quark stars (having finite
surface density) were evolved in general relativity.

In this work, we investigate the fate and stability of triaxial models against a variety
of perturbations. First, we establish the dynamical stability of the most triaxial figure of
quasiequilibrium along two constant rest mass sequences, one that corresponds to com-
pactness 0.1 and another one that corresponds to compactness 0.19. Second, by replacing
the Jacobi-like velocity flow with a Dedekind-like one, we explore the fate of the resulting
ellipsoidal neutron star. We find that in some cases this procedure leads to a Riemann-
S-type ellipsoidal figure of quasiequilibrium that barely rotates while largely preserving
its nonaxisymmetric shape. This object emits gravitational waves whose amplitude is
approximately 20% of the one coming from the original triaxial neutron star as it evolves
towards axisymmetry, and this highlights the importance of the fluid flow in accurate
gravitational wave analysis.

Here, we employ geometric units in which G = c = M⊙ = 1, unless stated otherwise.
Greek indices denote spacetime dimensions (0, 1, 2, 3), while Latin indices denote spatial
ones (1, 2, 3).

2. Numerical Methods and Model Parameters

For the construction of the initial models, we use the COCAL code as described
in [39–41], while for the evolution we use the EINSTEIN TOOLKIT [45–49]. Below, we
summarize the most important features of our initial data models and their evolutions.

2.1. Initial Data

We construct uniformly rotating triaxial neutron stars having angular velocity Ω and
velocity with respect to the inertial frame vi = Ωϕi = Ω(−y, x, 0). The fluid’s 4-velocity
can be written as

uα = utkα = ut(tα + vα) , (1)

where ut is a scalar. The spacetime of the rotating star possesses a helical Killing vector,
kα, where

kα = tα + Ωϕα, (2)

with the fluid variables being Lie-dragged along kα,

Lk(huα) = Lkρ = Lks = 0. (3)

Here, ρ, h, s are the rest mass density, enthalpy, and the entropy per unit rest mass. We
have ρh = ϵ + p, where ϵ is the total energy density and p is the pressure.

In order to ensure the existence of triaxial uniformly rotating models, we use a stiff
polytropic equation of state with Γ = 4. For the polytropic constant, we choose k = 1 in
G = c = M⊙ = 1. Similar to [41,43], the value of Γ used is simply to prove a point of
principle, rather than to address physical EOS parameters.

The models are computed with the COCAL code, a second-order finite-difference code
whose methods are explained, for example, in [40,50]. For computational convenience,
we employ the Isenberg–Wilson–Mathews (IWM) formulation [50–54]. Therefore the
3-metric is γij = ψ4 fij, where ψ is the conformal factor and fij the flat metric. The unknown
gravitational variables in the 3 + 1 formulation are the lapse α, the shift βi, and the conformal
factor ψ. In the COCAL code, the full system of equations (waveless formulation) is also
used, but the differences from the conformally flat IWM scheme are small [40]. A number
of diagnostics are used to describe the initial solutions, and explicit formulae are given in
the appendix of [40]. The most important diagnostics are the following: (1) the angular
momentum of the triaxial star J (where J is the Arnowitt–Deser–Misner (ADM) angular
momentum), which is computed via a surface integral at infinity or a volume integral over
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the spacelike hypersurface, (2) the kinetic energy, which is defined as T := 1
2 JΩ (although

we are not in axisymmetry, we still use this formula because it is gauge-invariant), and
(3) the gravitational potential energy, which is defined as W := M − Mp − T. Here, M is
the (ADM) mass and Mp is the proper mass (rest mass plus internal energy) of the star (see,
e.g., [55]). These expressions are then used to compute the rotation parameter β = T/|W|.
We also define the moment of inertia as I := J/Ω.

To measure the accuracy of the initial data, we use two diagnostics: The first one is the
difference between the Komar and ADM mass [40],

δM =
|MK − M|

MK
. (4)

For stationary and asymptotically flat spacetimes, MK = M [56]. The second diagnostic is
the relativistic virial equation [57]. In our calculations, both diagnostics are ∼ O(10−4).

We start our calculations by computing two sequences of axisymmetric rotating neu-
tron stars having constant rest mass that correspond to spherical compactions (M/R)s = 0.1
and 0.19. These sequences, which are shown with orange ((M/R)s = 0.1) and green
((M/R)s = 0.19) colors in Figure 1, are the analogues of the Maclaurin spheroids in New-
tonian gravity [19]. In the left panel of Figure 1, the mass is plotted against the central
density, while in the right panel we plot the the rotation parameter β versus the eccentricity
e :=

√
1 − (R̄z/R̄x)2 with respect to the proper radii. Note that the mass and the density

can by rescaled to any number using the polytropic constant k (in geometric units, kn/2,
where Γ = 1 + 1/n and n is the polytropic index, has units of length); hence, the axes in
the left panel are normalized accordingly. In the left panel of Figure 1, we also show the
sequence of spherically symmetric Tolman–Oppenheimer–Volkov (TOV) solutions (black
curve) and the sequence of maximally uniformly rotating (at the mass-shedding limit,
also called the Kepler limit) solutions (red curve). With a black (red) circle, we denote the
solution of maximum nonrotating (uniformly rotating) mass. The shaded area corresponds
to densities where the speed of sound cs is larger than the speed of light. All the solutions
used in this work are causal.

Figure 1. Left panel: Mass versus rest mass density for the spherical (black line) and mass-shedding
(red line) limits. Also, plotted are sequences of constant rest mass (green and orange lines) for
compactions (M/R)s = 0.19 and 0.1. Magenta and blue circles denote triaxial models. Right panel:
T/W versus the eccentricity e for sequences of Maclaurin (ML-orange, ML-green)- and Jacobi (JB-blue,
JB-magenta)-type ellipsoids for compactions (M/R)s = 0.1, 0.19. Solid magenta and blue circles are
models C010s17 and C019s08, respectively.

For sufficiently high rotation rate (β), a second branch of solutions appears. These
are triaxial solutions (Rx ̸= Ry ̸= Rz) that correspond to the Newtonian Jacobi ellip-
soids [19]. The two sequences that correspond to (M/R)s = 0.1 and 0.19 are shown with
blue ((M/R)s = 0.1) and magenta ((M/R)s = 0.19) colors. In the left panel of Figure 1, all
triaxial solutions that correspond to each sequence have masses and densities very close
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to each other, so they appear as a single triangle point (magenta or blue). In the right
panel, though, the triaxial sequences are clearly seen. For a fixed eccentricity, a triaxial
model has less T/|W| than the corresponding axisymmetric model. In particular, for a
fixed eccentricity, the triaxial solution has less gravitational (ADM) mass M (thus more
negative gravitational potential energy W), angular momentum J, angular velocity Ω,
and moment of inertia I than the corresponding axisymmetric model. Therefore, it has
less kinetic energy, too. On the other hand, it has larger proper mass and hence less total
energy T + W = M − Mp (T + W is more negative for the triaxial solution). Thus, it is the
preferred figure of equilibrium.

From the right panel of Figure 1, we notice that the bifurcation point happens at
larger β or e as the compactness increases. The triaxial sequence also shrinks the larger the
compactness, which intuitively means that it is harder to construct a triaxial neutron star of
large compactness. For incompressible fluids [36] in general relativity, it was found that

βs = βNewt
s + 0.126

(
M
R

)
s

(
1 +

(
M
R

)
s

)
(5)

where βNewt
s = 0.1375 at eccentricity eNewt

s = 0.8127. Equation (5) predicts that βs = 0.15 at
(M/R)s = 0.1, while for (M/R)s = 0.19, it is βs = 0.166, which is in broad agreement with
the right panel of Figure 1. Notice also that the IWM formulation slightly overestimates
βs as well as es at the bifurcation point with respect to a full solution to the Einstein
equations [40].

The models used in this study are shown in the right panel of Figure 1 as blue and ma-
genta dots. They constitute the most triaxial solutions along the corresponding sequences
of constant rest mass. In Table 1, these two solutions are dubbed as C010s17 (magenta
corresponds to compactness 0.1) and C019s08 (blue corresponds to compactness 0.19).

Table 1. Initial data models C010s17 and C019s08 used in this work. Here, ρ, Ri, e =
√

1 − (R̄z/R̄x)2,
Ω, M, M0, (M/R)s, T/|W|, and I are the central rest mass density, the coordinate radii, the proper
eccentricity with respect to the z-axis, the angular velocity, the ADM mass, the rest mass, the
corresponding (with the same rest mass) spherical compactness, the ratio of kinetic over gravitational
potential energy, and the moment of inertia, respectively. To convert to cgs units, we use the fact that
1 = 1.477 km = 4.927 µs = 1.989 × 1033 g.

Model ρ Rx Rz/Rx Ry/Rx e ΩM

C010s17 0.3430 0.4421 0.4444 0.6875 0.8918 0.01808
C019s08 0.4583 0.4476 0.4619 0.7813 0.8778 0.05098

Model M M0 J/M2 (M/R)s T/|W | I(×10−3)

C010s17 0.03042 0.03193 1.117 0.1 0.1547 1.740
C019s08 0.06888 0.07578 0.9011 0.19 0.1676 5.781

We employed the single-star module of the COCAL code to compute the quasiequi-
librium solutions of this work. This module uses the KEH method [58,59] on a single
spherical patch (r, θ, ϕ) with r ∈ [ra, rb], θ ∈ [0, π], and ϕ ∈ [0, 2π], where ra = 0,
rb = O(106M) (no compactification used), to achieve convergence through a Green’s
function iteration. The grid structure in the angular dimensions is equidistant but not in
the radial direction. The definitions of the grid parameters can be seen in Table 2, along
with the specific values used here.
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Table 2. Summary of grid parameters used by COCAL to produce the triaxial models. Note that
Nf

r = 128 is the number of points across the largest star radius.

ra = 0 : Radial coordinate where the radial grids start.
rb = 106 : Radial coordinate where the radial grids end.
rc = 1.25 : Radial coordinate between ra and rb where the radial grid spacing changes.
Nr = 384 : Number of intervals ∆ri in r ∈ [ra, rb].
Nf

r = 128 : Number of intervals ∆ri in r ∈ [ra, 1].
Nm

r = 160 : Number of intervals ∆ri in r ∈ [ra, rc].
Nθ = 96 : Number of intervals ∆θj in θ ∈ [0, π].
Nϕ = 96 : Number of intervals ∆ϕk in ϕ ∈ [0, 2π].
L = 12 : Order of included multipoles.

2.2. Evolutions

For the evolution, we use the BAIKAL [60] code, which solves the Einstein field equa-
tions in the BSSN formalism, and the ILLINOIS GRMHD [46,47] to evolve fluid quantities.
The code is built on the CACTUS infrastructure and uses CARPET [48] for mesh refinement,
which allows us to focus numerical resolution on the strong-gravity regions while also
placing outer boundaries at large distances well into the wave zone for accurate GW extrac-
tion and stable boundary conditions. The evolved geometric variables are the conformal
metric γ̃ij, the conformal factor ϕ, (γij = e4ϕγ̃ij), the conformally rescaled, tracefree part
of the extrinsic curvature, Ãij, the trace of the extrinsic curvature, K, and three auxiliary
variables Γ̃i = −∂jγ̃

ij, a total of 17 functions. For the kinematical variables, we adopt
the puncture gauge conditions [61,62], which are part of the family of gauge conditions,
using an advective “1 + log” slicing for the lapse and a 2nd-order “Gamma-driver” for the
shift [63].

The equations of hydrodynamics are solved in conservation-law form, adopting high-
resolution shock-capturing methods [64]. The primitive, hydrodynamic matter variables
are the rest mass density, ρ, the pressure p, and the three-coordinate velocity vi = ui/u0.
The enthalpy is written as h = 1 + e + p/ρ, and therefore the stress energy tensor is
Tαβ = ρhuαuβ + pgαβ. Here, e is the specific internal energy (this should not be confused
with the eccentricity in Table 1).

The grid structure used in these evolutions is summarized in Table 3. Typically, we
use five refinement levels, with the innermost level’s half-side length being approximately
∼1.5 times larger than the radius of the star in the initial data (Rx). We use 240 × 240 ×
240 cells for the innermost refinement level, which means that we have approximately
160 points across the neutron star’s largest diameter. (For the initial data construction, we
used 256 points across the largest neutron star diameter.) For the innermost refinement
level, this implies a ∆x ∼ 5.53 × 10−3 (C010s17) and ∆x ∼ 5.60 × 10−3 (C019s08). This
number of points is necessary in order to have accurate evolutions of such stiff equations
of state (Γ = 4), which present a challenge for any evolution code.

Table 3. Grid parameters used for the evolution of each model. Parameter N corresponds to the
number of points used to cover the largest radius of the star. Parameter dx is the step interval at the
coarser level.

Model Grid Hierarchy dx N

C010s17 {8.49, 4.24, 2.12, 1.06, 0.531} 8.84 × 10−2 80
C019s08 {8.59, 4.30, 2.15, 1.07, 0.537} 8.95 × 10−2 80

3. Results

We perform full general relativistic simulations of the two most triaxial models C010s17
and C019s08 under a variety of perturbations in order to probe their stability and, more
importantly, their fate, especially with respect to their nonaxisymmetric shape. As a first
test for dynamical stability, we evolve these triaxial models by applying a 5% pressure
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depletion in their interior. Note that the dynamical timescale is a fraction of the period P of
rotation of any system

td
P

=
td
M

M
P

∼ 1
ΩM

M
P

∼ 0.16 . (6)

In Figure 2, the maximum (central) density oscillations versus time are shown for
five rotation periods. Overall, both models in Table 1 show the same oscillatory behavior
when we pressure-deplete them; thus, they are stable against quasiradial perturbations on
dynamical timescales. Since these are the most triaxial models along a sequence of constant
rest mass, the presented triaxial sequence (quasiequilibria along magenta or blue lines in
right panel of Figure 1) would also be stable.

0 1 2 3 4 5
t/P

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

m
ax

/
m

ax
(t

=
0)

C010s17
C019s08

Figure 2. Behavior of maximum density for models C010s17 and C019s08 under a 5% pressure depletion.

Having established the dynamical stability against quasiradial perturbations, we now
focus on the velocity flow of the triaxial figures of quasiequilibrium and investigate how it
affects their global hydrodynamical stability. Let us recall that in Newtonian gravity the
velocity of a Riemann-S ellipsoid in the inertial frame is

vi =

((
Rx

Ry
Λ − Ω

)
y,
(
−

Ry

Rx
Λ + Ω

)
x, 0

)
, (7)

where Ω is the angular velocity of the ellipsoid and Λ the angular frequency of the internal
fluid circulation [19,27]. When there is no internal fluid circulation (Λ = 0), the fluid
velocity describes the velocity field of a Jacobi ellipsoid with vorticity ζ = −2Ω, while
when there is no angular velocity (Ω = 0) the fluid velocity describes the velocity field of a
Dedekind ellipsoid with vorticity ζ = −( Rx

Ry
+

Ry
Rx
)Ω.

Since models C010s17 and C019s08 are the analogues of Jacobi ellipsoids in general
relativity with a compressible equation of state, we replace their velocity flow field with
the corresponding one of Dedekind ellipsoids. By substituting in Equation (7) Ω = 0
and Λ = Ω, we find that the star significantly destabilizes; hence, we follow the proce-
dure below. First, we identify the contours of constant rest mass density and construct
their tangential directions. We then assign at each point a velocity whose direction is
the one computed from the tangent to the isocontours, and its magnitude is given by
|Λ|((yRx/Ry)2 + (xRy/Rx)2)1/2, where Λ is a free parameter. In this way, we ensure that
the velocity field is consistent with the density gradients and only its magnitude can cause
significant deformations. Although the constraint equations are not solved after the new
velocity profile is imposed, they remain sufficiently small (≲ 10−5) at least initially.

Setting A = Λ/Ω, we find that for the model C010s17 and A = 0.7, 0.75, 0.8, the ro-
tational motion of the triaxial figure is greatly reduced but significant nonaxisymmetric
oscillations are present. We refer to these evolutions as C010s17-A070, C010s17-A075,
and C010s17-A080, respectively. In the left panel of Figure 3, dotted colored lines show
the density isocontours at t = 0 with the velocity field constructed in the way explained
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above for the C010s17-A075 model. Also shown are the isocontours and velocity field at
the end of our simulations at t/P = 30.6. In the right panel of Figure 3, we plot the m = 2
nonaxisymmetric mode amplitude for all four models (C010s17 and its perturbed models)

Cm =
∫

ρuteimϕ
√
−gd3x , (8)

normalized by the rest mass of the system. For the nonperturbed case, C010s17, the am-
plitude of C2 is monotonically decreasing until the end of our simulations. This is due to
the emission of gravitational waves and its loss of energy and angular momentum, which
make the neutron star more axisymmetric. Notice that a nonrotating triaxial ellipsoid that
preserves its shape (as an equilibrium Dedekind ellipsoid) would have a constant C2 at
all times in a simulation. The perturbed cases C010s17-A070, C010s17-A075, and C010s17-
A080 show an initial increased bar mode which decays in different ways. In all four cases,
we also plot linear fits with dashed lines. As we can see, all three perturbed models evolve
towards axisymmetry with different rates. The model that clearly shows the least amount
of triaxiality change (for t/P ≳ 10) is C010s17-A070.

0.50 0.25 0.00 0.25 0.50
x [M]

0.50

0.25

0.00

0.25

0.50

y 
[M

]

10 15 20 25 30
t/P

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
|C

m
/C

0|
C010s17 m=2
C010s17-A070 m=2
C010s17-A075 m=2
C010s17-A080 m=2

Figure 3. Left panel: Solid (dotted) colored lines are density isocontours at t/P = 30.6 (t/P = 0) for
the model C010s17-A075. The velocity field (red arrows for t/P = 30.6 and black ones for t/P = 0) is
also shown. Right panel: The m = 2 mode amplitude for triaxial model C010s17 as well as for all its
velocity-perturbed models. Dashed lines are linear fits.

In order to appreciate the overall motion of these ellipsoidal figures, we plot in Figure 4,
left column, the density profile of the nonperturbed case C010s17 at a select number of
times t/P = 0, 0.25, 0.5, 0.75, 1.0, 20.0. In the middle column, we plot for the same times
model C010s17-A070, while in the right column we plot model C010s17-A075. As can be
seen from the first five instances (t/P ≲ 1), where the nonperturbed model C010s17 makes
one complete revolution, models C010s17-A070 and C010s17-A075 barely rotate while they
exhibit nonaxisymmetric deformations. By the end of our simulations at t ∼ 30P, all models
remain nonaxisymmetric (although less than at t = 0) and continue to oscillate mildly.

In the left panel of Figure 5, we plot the gravitational wave strain h× for the C010s17
models following [65]. It is obvious that the Dedekind-like velocity flow decreases the
gravitational wave signature of the triaxial figures by less than half, even at early times.
Consistent with Figure 4 and the left panel of Figure 3, we see that the model with the
least amount of gravitational wave content is C010s17-A070 (orange line), whose strain
exhibits a decrease of ∼20% of the original C010s17 case (blue line). Note that since
the perturbed models are barely rotating, these high-frequency gravitational waves are
due to the hydrodynamical flow perturbations in the neutron stars, which showcases the
importance of accurate hydrodynamical modeling for the understanding of a physical
system through gravitational waves. In the right panel of Figure 5, we plot the power
spectrum of the C010s17 models scaled for a 1.4 M⊙ triaxial neutron star mass at 50 Mpc,
along with the noise curves for Advanced LIGO’s design sensitivity [66] and the ET-B
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configuration of the Einstein Telescope [67]. The peak frequency of the unperturbed C010s17
model (blue curve) at ∼840 Hz is consistent with its orbital angular frequency (Ω/π) and,
in principle, is detectable by Advanced LIGO. Consistent with the left panel, the power
spectrum of the perturbed models is weaker but still detectable from next-generation
observatories such as the Einstein Telescope. Once again, the similarities between the
different curves show that the star’s rotation can be degenerate with the fluid flow in the
frequency domain.
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Figure 5. Left panel: Gravitational wave strain normalized to the maximum value of the unperturbed
model C01s17. Right panel: Power spectrum of the C010s17 models for a 1.4 M⊙ triaxial star at a
distance of 50 Mpc.

The computational experiment performed with model C010s17 was repeated for the
more compact model C019s08. We found that for almost any value of the parameter Λ
that we used, the star was highly destabilized. For a select set of values (e.g., A = 0.3, 0.4)
where the star survived, its rotation rate was unaffected and its gravitational wave content
was not reduced (actually, the gravitational waves became more complicated due to the
induced oscillations). Thus, we were unable to create Dedekind-type flows for these highly
relativistic and compressible objects. One way to probably improve our treatment is to use

the relativistic magnitude of the velocity
√

γijvivj instead of the Newtonian one used here.
We plan to examine this problem in the future.

4. Conclusions

We constructed constant rest mass sequences of triaxial uniformly rotating neutron
stars with a compressible equation of state in general relativity. We examined the stability
of the most triaxial members of these sequences, finding them stable against radial and
nonaxisymmetric perturbations. These quasiequilibria are the analogs of the incompressible
Jacobi ellipsoids in Newtonian gravity. Jacobi ellipsoids are congruent to their Dedekind
counterparts with no internal motion. A Jacobi ellipsoid with angular velocity Ω has the
same principal axes as the Dedekind ellipsoid with vorticity ζ = ( Rx

Ry
+

Ry
Rx
)Ω. In general

relativity, this picture may be different. Here, we simulated a Dedekind-type of flow in an
Jacobi-type relativistic figure of quasiequilibrium. We found that for small compactness (0.1)
the triaxial neutron star evolves to a Riemann-S-type of ellipsoid with minimal rotation and
gravitational wave emission. On the other hand, our high-compactness (0.19) triaxial model,
although similarly dynamically stable, was unstable to almost all Dedekind-type flows that
we tried. This does not mean that general relativistic analogues of Dedekind ellipsoids
do not exist, but a self-consistent calculation is necessary to address their existence and
stability. An important product of this investigation is the influence of a hydrodynamical
fluid flow on the generation of gravitational waves and therefore the parameter estimation
of a certain physical system.
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50. Tsokaros, A.; Uryū, K. Methods for relativistic self-gravitating fluids: From binary neutron stars to black hole-disks and
magnetized rotating neutron stars. Gen. Relativ. Gravit. 2022, 54, 52. [CrossRef]

51. Isenberg, J.A. Waveless Approximation Theories of Gravity. Int. J. Mod. Phys. 2008, 17, 265–273. [CrossRef]
52. Wilson, J.R.; Mathews, G.J. Relativistic hydrodynamics. In Frontiers in Numerical Relativity; Evans, C.R., Finn, L.S., Hobill, D.W.,

Eds.; Cambridge University Press: Cambridge, MA, USA, 1989; pp. 306–314.
53. Wilson, J.R.; Mathews, G.J. Instabilities in Close Neutron Star Binaries. Phys. Rev. Lett. 1995, 75, 4161. [CrossRef]
54. Wilson, J.R.; Mathews, G.J.; Marronetti, P. Relativistic numerical model for close neutron-star binaries. Phys. Rev. D 1996,

54, 1317–1331. [CrossRef]
55. Friedman, J.L.; Ipser, J.R.; Parker, L. Rapidly Rotating Neutron Star Models. Astrophys. J. 1986, 304, 115. [CrossRef]
56. Beig, R. Arnowitt-Deser-Misner energy and g00. Phys. Lett. A 1978, 69, 153–155. [CrossRef]
57. Gourgoulhon, E.; Bonazzola, S. A formulation of the virial theorem in general relativity. Class. Quantum Gravity 1994, 11, 443–452.

[CrossRef]
58. Komatsu, H.; Eriguchi, Y.; Hachisu, I. Rapidly rotating general relativistic stars. I - Numerical method and its application to

uniformly rotating polytropes. Mon. Not. R. Astron. Soc. 1989, 237, 355–379. [CrossRef]
59. Komatsu, H.; Eriguchi, Y.; Hachisu, I. Rapidly rotating general relativistic stars. II – Differentially rotating polytropes. Mon. Not.

R. Astron. Soc. 1989, 239, 153–171. [CrossRef]
60. Ruchlin, I.; Etienne, Z.B.; Baumgarte, T.W. SENR/NRPy+: Numerical Relativity in Singular Curvilinear Coordinate Systems.

Phys. Rev. 2018, D97, 064036. [CrossRef]
61. Baker, J.G.; Centrella, J.; Choi, D.I.; Koppitz, M.; van Meter, J. Gravitational wave extraction from an inspiraling configuration of

merging black holes. Phys. Rev. Lett. 2006, 96, 111102. [CrossRef]
62. Campanelli, M.; Lousto, C.O.; Marronetti, P.; Zlochower, Y. Accurate Evolutions of Orbiting Black-Hole Binaries without Excision.

Phys. Rev. Lett. 2006, 96, 111101. [CrossRef]
63. Alcubierre, M.; Brügmann, B.; Diener, P.; Koppitz, M.; Pollney, D.; Seidel, E.; Takahashi, R. Gauge conditions for long-term

numerical black hole evolutions without excision. Phys. Rev. D 2003, 67, 084023. [CrossRef]
64. Del Zanna, L.; Bucciantini, N. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I.

Hydrodynamics. Astron. Astrophys. 2002, 390, 1177–1186. [CrossRef]
65. Reisswig, C.; Pollney, D. Notes on the integration of numerical relativity waveforms. Class. Quantum Grav. 2011, 28, 195015.

[CrossRef]
66. Updated Advanced LIGO Sensitivity Design Curve, LIGO Document T1800044-v5. 2023. https://dcc.ligo.org/LIGO-T1800044

-v5/public (accessed on 4 March 2024).
67. ET-B Sensitivity Curve, 2023. ET Document ET-0002A-18. https://apps.et-gw.eu/tds/ql/?c=13222 (accessed on 4 March 2024).
68. Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; et al. XSEDE: Accelerating

Scientific Discovery. Comput. Sci. Eng. 2014, 16, 62–74. [CrossRef]
69. Boerner, T.J.; Deems, S.; Furlani, T.R.; Knuth, S.L.; Towns, J. ACCESS: Advancing Innovation: NSF’s Advanced Cyberinfrastructure

Coordination Ecosystem: Services & Support. In Proceedings of the In Practice and Experience in Advanced Research Computing
(PEARC ’23), ACM, Portland, OR, USA, 23–27 July 2023; p. 4. [CrossRef]

70. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
71. Caswell, T.A.; Droettboom, M.; Lee, A.; de Andrade, E.S.; Hoffmann, T.; Hunter, J.; Klymak, J.; Firing, E.; Stansby, D.; Varoquaux,

N.; et al. matplotlib, v3.4.3; Zenodo: Geneva, Switzerland, 2021. [CrossRef]
72. Bozzola, G. kuibit: Analyzing Einstein Toolkit simulations with Python. J. Open Source Softw. 2021, 6, 3099. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10714-022-02928-1
http://dx.doi.org/10.1142/S0218271808011997
http://dx.doi.org/10.1103/PhysRevLett.75.4161
http://dx.doi.org/10.1103/PhysRevD.54.1317
http://dx.doi.org/10.1086/164149
http://dx.doi.org/10.1016/0375-9601(78)90198-6
http://dx.doi.org/10.1088/0264-9381/11/2/015
http://dx.doi.org/10.1093/mnras/237.2.355
http://dx.doi.org/10.1093/mnras/239.1.153
http://dx.doi.org/10.1103/PhysRevD.97.064036
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevD.67.084023
http://dx.doi.org/10.1051/0004-6361:20020776
http://dx.doi.org/10.1088/0264-9381/28/19/195015
https://dcc.ligo.org/LIGO-T1800044-v5/public
https://dcc.ligo.org/LIGO-T1800044-v5/public
https://apps.et-gw.eu/tds/ql/?c=13222
http://dx.doi.org/10.1109/MCSE.2014.80
http://dx.doi.org/10.1145/3569951.3597559
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.5281/zenodo.5194481.
http://dx.doi.org/10.21105/joss.03099

	Introduction
	Numerical Methods and Model Parameters
	Initial Data
	Evolutions

	Results
	Conclusions
	References

