Coefficient Bounds for Two Subclasses of Analytic Functions Involving a Limacon-Shaped Domain
Abstract
:1. Introduction and Motivation
2. A Set of Preliminaries
3. Coefficient Bounds and the Fekete–Szegő Estimate
4. Coefficient Inequalities for the Function
5. Application of the Poisson Distribution
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinant of univalent function. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Noor, K.I. Hankel determinant problem for the class of functions with bounded boundary rotation. Rev. Roum. Math. Pures. Appl. 1983, 28, 731–739. [Google Scholar]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Barukab, O.M.; Arif, M.; Abbas, M.; Khan, S.A. Sharp bounds of the coefficient results for the family of bounded turning functions associated with a petal-shaped domain. J. Funct. Spaces 2021, 2021, 5535629. [Google Scholar] [CrossRef]
- Darus, M.; Shanmugam, T.N.; Sivasubramanian, S. Fekete–Szegö inequality for a certain class of analytic functions. Mathematica 2007, 49, 29–34. [Google Scholar]
- Mohapatra, R.N.; Panigrahi, T. Second Hankel determinant for a class of analytic functions defined by Komatu integral operator. Rend. Mat. Appl. 2020, 41, 51–58. [Google Scholar]
- Murugusundaramoorthy, G.; Bulboaca, T. Hankel determinants for new subclasses of analytic functions related to a shell shaped region. Mathematics 2020, 8, 1041. [Google Scholar] [CrossRef]
- Shi, L.; Ali, I.; Arif, M.; Cho, N.E.; Hussain, S.; Khan, H. A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain. Mathematics 2019, 7, 418. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceeding of the International Conference on Complex Analysis, Tianjin, China, 1992; International Press Inc.: Somerville, MA, USA, 1992. [Google Scholar]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Sokół, J. On some subclass of strongly starlike functions. Demonstr. Math. 1998, 31, 81–86. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Int. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, J. On coefficient estimates for a certain class of starlike functions. Hacet. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, J. Some properties related to a certain class of starlike functions. Comptes Rendus Math. 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Raina, R.K.; Sharma, P.; Sokól, J. Certain Classes of Analytic Functions Related to the Crescent-Shaped Regions. J. Contemp. Math. Anal. 2018, 53, 355–362. [Google Scholar] [CrossRef]
- Sokól, J.; Thomas, D.K. Further results on a class of starlike functions related to the Bernoulli lemniscate. Houst. J. Math. 2018, 44, 83–95. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Kumar, S.; Ravichandran, V. A subclass of starlike functions associated with a rational function. Southeast Asian Bull. Math. 2016, 40, 199–212. [Google Scholar]
- Yunus, Y.; Halim, S.A.; Akbarally, A.B. Subclass of starlike functions associated with a limacon. AIP. Conf. Proc. 2018, 1974, 30023. [Google Scholar]
- Kargar, R.; Ebadian, A.; Sokół, J. On Booth lemniscate and starlike functions. Anal. Math. Phys. 2019, 9, 143–154. [Google Scholar] [CrossRef]
- Khatter, K.; Ravichandran, V.; Kumar, S.S. Starlike functions associated with exponential function and lemniscate of Bernoulli. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2019, 113, 233–253. [Google Scholar] [CrossRef]
- Goel, P.; Sivaprasad Kumar, S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On alpha-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 966–1002. [Google Scholar]
- Dziok, J.; Raina, R.K.; Sokół, J. Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 2011, 61, 2605–2613. [Google Scholar] [CrossRef]
- Jurasińnska, R.; Sokół, J. Some problems for certain family of starlike functions. Math. Comput. Model. 2012, 55, 2134–2140. [Google Scholar] [CrossRef]
- Malik, S.N.; Mahmood, S.; Raza, M.; Farman, S.; Zainab, S. Coefficient inequalities of function associated with petal type domains. Mathematics 2018, 6, 298. [Google Scholar] [CrossRef]
- Masih, V.S.; Kanas, S. Subclasses of Starlike and Convex Functions Associated with the Limacon Domain. Symmetry 2020, 12, 942. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Shakeel, A.; Kutbi, M.A. Coefficient bounds of Kamali-type starlike functions related with a limacon-shaped domain. J. Function Spaces 2021, 2021, 4395574. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Porwal, S. An application of a Poisson distribution series on certain analytic function. J. Complex Anal. 2014, 2014, 984135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaz, D.; Panigrahi, T.; El-Deeb, S.M.; Pattnayak, E.; Sivasubramanian, S. Coefficient Bounds for Two Subclasses of Analytic Functions Involving a Limacon-Shaped Domain. Symmetry 2024, 16, 183. https://doi.org/10.3390/sym16020183
Breaz D, Panigrahi T, El-Deeb SM, Pattnayak E, Sivasubramanian S. Coefficient Bounds for Two Subclasses of Analytic Functions Involving a Limacon-Shaped Domain. Symmetry. 2024; 16(2):183. https://doi.org/10.3390/sym16020183
Chicago/Turabian StyleBreaz, Daniel, Trailokya Panigrahi, Sheza M. El-Deeb, Eureka Pattnayak, and Srikandan Sivasubramanian. 2024. "Coefficient Bounds for Two Subclasses of Analytic Functions Involving a Limacon-Shaped Domain" Symmetry 16, no. 2: 183. https://doi.org/10.3390/sym16020183
APA StyleBreaz, D., Panigrahi, T., El-Deeb, S. M., Pattnayak, E., & Sivasubramanian, S. (2024). Coefficient Bounds for Two Subclasses of Analytic Functions Involving a Limacon-Shaped Domain. Symmetry, 16(2), 183. https://doi.org/10.3390/sym16020183