Some Comments on the Superstability of a General Functional Equation
Abstract
:1. Introduction
- (i)
- If , then ξ is additive, i.e.,
- (ii)
- If U is complete, and , then there is a unique additive mapping , such that
2. Auxiliary Information
- (i)
- h is bounded.
- (ii)
- h and f satisfy the equationand there is , such that
3. The Main Result
- There exist and such that
- (i)
- f is an unbounded solution to the equationwith .
- (ii)
- f is bounded and, in the case ,
4. Some Applications
- (i)
- f and h are unbounded, h is a solution to the equationand
- (ii)
- f and h are bounded.
- (i)
- in the case , we have and
- (ii)
- in the case , .
- (a)
- If and satisfy the inequalitythen g is a constant function and
- (b)
- If satisfies the inequalitythen it is a solution to the equation
- (a)
- If and satisfy the inequalitythen g is a constant function and
- (b)
- If satisfies the inequalitythen it is a solution to the equation
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hyers, D.H. On the Stability of the Linear Functional Equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
- Hyers, D.H.; Ulam, S.M. On approximate isometries. Bull. Am. Math. Soc. 1945, 51, 288–292. [Google Scholar] [CrossRef]
- Bourgin, D.G. Approximate isometries. Bull. Am. Math. Soc. 1946, 52, 704–714. [Google Scholar] [CrossRef]
- Hyers, D.H.; Ulam, S.M. Approximate Isometries of the Space of Continuous Functions. Ann. Math. 1947, 48, 285. [Google Scholar] [CrossRef]
- Bourgin, D.G. Approximately isometric and multiplicative transformations on continuous function rings. Duke Math. J. 1949, 16, 385–397. [Google Scholar] [CrossRef]
- Bourgin, D.G. Classes of transformations and bordering transformations. Bull. Am. Math. Soc. 1951, 57, 223–237. [Google Scholar] [CrossRef]
- Hyers, D.H.; Ulam, S.M. Approximately convex functions. Proc. Amer. Math. Soc. 1952, 3, 821–828. [Google Scholar] [CrossRef]
- Aoki, T. On the Stability of the linear Transformation in Banach Spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Czerwik, S. Functional Equations and Inequalities in Several Variables; World Scientific: London, UK, 2002. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer Nature: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Tripathy, A.K. Hyers-Ulam Stability of Ordinary Differential Equations; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Brzdęk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operaters; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Hayes, W.; Jackson, K.R. A survey of shadowing methods for numerical solutions of ordinary differential equations. Appl. Numer. Math. 2005, 53, 299–321. [Google Scholar] [CrossRef]
- Palmer, K. Shadowing in Dynamical Systems.Theory and Applications; Kluwer Academic Presss: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Baker, J.; Lawrence, J.; Zorzitto, F. The stability of the equation f(x + y) = f(x)f(y). Proc. Amer. Math. Soc. 1979, 74, 242–246. [Google Scholar] [CrossRef]
- Baker, J. The stability of the cosine equation. Proc. Amer. Math. Soc. 1980, 80, 411–416. [Google Scholar] [CrossRef]
- Badora, R.; Brzdęk, J.; Ciepliński, K. Applications of Banach limit in Ulam stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
- Ger, R.; Šemrl, P. The stability of the exponential equation. Proc. Amer. Math. Soc. 1996, 124, 779–787. [Google Scholar] [CrossRef]
- Székelyhidi, L. On a theorem of Baker, Lawrence nad Zorzitto. Proc. Amer. Math. Soc. 1982, 84, 95–96. [Google Scholar] [CrossRef]
- Badora, R. Note on the superstability of the Cauchy functional equation. Publ. Math. Debr. 2000, 57, 421–424. [Google Scholar] [CrossRef]
- Cholewa, P.W. The stability of the sine equation. Proc. Amer. Math. Soc. 1983, 88, 631–634. [Google Scholar] [CrossRef]
- Szekelyhidi, L. The stability of the sine and cosine functional equations. Proc. Am. Math. Soc. 1990, 110, 109–115. [Google Scholar] [CrossRef]
- Tyrala, I. A characterization of the sine function by functional inequalities. Math. Inequalities Appl. 1998, 13–33. [Google Scholar] [CrossRef]
- Székelyhidi, L. An abstract superstability theorem. Abh. Math. Sem. Univ. Hambg. 1989, 59, 81–83. [Google Scholar] [CrossRef]
- Badora, R.; Chmieliński, J. Decomposition of mappings approximately inner product preserving. Nonlinear Anal. Theory Methods Appl. 2005, 62, 1015–1023. [Google Scholar] [CrossRef]
- Kim, G.H. The stability of d’Alembert and Jensen type functional equations. J. Math. Anal. Appl. 2007, 325, 237–248. [Google Scholar] [CrossRef]
- Kim, G.H. On the stability of mixed trigonometric functional equations. Banach J. Math. Anal. 2007, 1, 227–236. [Google Scholar] [CrossRef]
- Kim, G.H. On the stability of the generalized sine functional equations. Acta Math. Sin. Engl. Ser. 2009, 25, 29–38. [Google Scholar] [CrossRef]
- Batko, B. Stability of Dhombres’ equation. Bull. Aust. Math. Soc. 2004, 70, 499–505. [Google Scholar] [CrossRef]
- Chudziak, J. Stability of the generalized Gola̧b-Schinzel equation. Acta Math. Hungar. 2006, 113, 133–144. [Google Scholar] [CrossRef]
- Chudziak, J.; Tabor, J. On the stability of the Gola̧b-Schinzel functional equation. J. Math. Anal. Appl. 2005, 302, 196–200. [Google Scholar] [CrossRef]
- Förg-Rob, W.; Schwaiger, J. On the stability of some functional equations for generalized hyperbolic functions and for the generalized cosine equation. Results Math. 1994, 26, 274–280. [Google Scholar] [CrossRef]
- Jabłoński, W. Stability of homogeneity almost everywhere. Acta Math. Hung. 2007, 117, 219–229. [Google Scholar] [CrossRef]
- Tabor, J.; Tabor, J. Homogeneity is superstable. Publ. Math. Debrecen 1994, 45, 123–130. [Google Scholar] [CrossRef]
- Trif, T. On the superstability of certain functional equations. Demonstr. Math. 2002, 35, 813–820. [Google Scholar] [CrossRef]
- Tabor, J. Stability of the Cauchy type equation in Lp norms. Result. Math. 1997, 32, 145–158. [Google Scholar] [CrossRef]
- Székelyhidi, L. The stability of D’Alembert type functional equation. Acta Sci. Math. (Szeged) 1982, 44, 313–320. [Google Scholar]
- Jung, S.-M. On the superstability of the functional equation f(xy) = yf(x). Abh. Math. Sem. Univ. Hambg. 1997, 67, 315–322. [Google Scholar] [CrossRef]
- Stetkær, H. Functional Equations on Groups; World Scientific: Singapore, 2013. [Google Scholar]
- Wilson, W.H. On certain related functional equations. Bull. Am. Math. Soc. 1920, 26, 300–312. [Google Scholar] [CrossRef]
- Aczél, J. Lectures on Functional Equations and Their Applications; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Aczél, J.; Dhombres, J. Functional Equations in Several Variables; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Hwang, H.J.; Kim, G.H. Superstability of the p-power-radical functional equation related to sine function equation. Electron. Res. Arch. 2023, 31, 6347–6362. [Google Scholar] [CrossRef]
- Kim, G.H. Superstability of the p-radical functional equations related to Wilson’s and Kim’s equation. Int. J. Nonlinear Anal. Appl. 2021, 12, 571–582. [Google Scholar]
- Kim, G.H. On the superstability of the p-power-radical sine functional equation. Nonlinear Funct. Anal. Appl. 2023, 28, 801–812. [Google Scholar]
- Brzdęk, J.; Najdecki, A.; Xu, B. Two general theorems on superstability of functional equations. Aequationes Math. 2014, 89, 771–783. [Google Scholar] [CrossRef]
- de Place Friis, P.; Stetkær, H. On the cosine-sine functional equation on groups. Aequat. Math. 2002, 64, 145–164. [Google Scholar] [CrossRef]
- Sinopoulos, P. Functional equations on semigroups. Aequationes Math. 2000, 59, 255–261. [Google Scholar] [CrossRef]
- Brzdęk, J. On solutions of a generalization of the Reynolds functional equation. Demonstr. Math. 2008, 41, 859–868. [Google Scholar] [CrossRef]
- Dubreil-Jacotin, M.L. Propriétés algébriques des transformations de Reynolds. C.R. Acad. Sci. Paris 1953, 236, 1950–1951. [Google Scholar]
- Matras, Y. Sur l’équation fonctionnelle: f(x · f(y))=f(x) · f(y). Acad. Roy. Belg. Bull. Cl. Sci. 1969, 55, 731–751. [Google Scholar] [CrossRef]
- Najdecki, A. On Stability of a functional equation connected with the Reynolds operator. J. Inequalities Appl. 2007, 2007, 79816. [Google Scholar] [CrossRef]
- Bajger, M.; Brzdęk, J.; El-hady, E.-S.; Jabłońska, E. On the continuous cancellative semigroups on a ieal Interval and on a circle and some symmetry issues. Symmetry 2020, 12, 1974. [Google Scholar] [CrossRef]
- Krapež, A. Generalized associativity on rectangular quasigroups. In Functional Equations—Results and Advances; Kluver Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 3, pp. 335–349. [Google Scholar]
- Maksa, G. The generalized associativity equation revisited. Rocznik Nauk.-Dydakt. Prace Mat. 2000, 17, 175–180. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzdęk, J. Some Comments on the Superstability of a General Functional Equation. Symmetry 2024, 16, 1654. https://doi.org/10.3390/sym16121654
Brzdęk J. Some Comments on the Superstability of a General Functional Equation. Symmetry. 2024; 16(12):1654. https://doi.org/10.3390/sym16121654
Chicago/Turabian StyleBrzdęk, Janusz. 2024. "Some Comments on the Superstability of a General Functional Equation" Symmetry 16, no. 12: 1654. https://doi.org/10.3390/sym16121654
APA StyleBrzdęk, J. (2024). Some Comments on the Superstability of a General Functional Equation. Symmetry, 16(12), 1654. https://doi.org/10.3390/sym16121654