On λ-Pseudo Bi-Starlike Functions Related to Second Einstein Function
Abstract
1. Introduction
2. Coefficient Estimates for
3. Fekete–Szegö Problem of
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babalola, K.O. On λ-pseudo-starlike functions. J. Class. Anal. 2013, 3, 137–147. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problem for certain families of analytic functions I. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Khan, M.F. Properties of q-starlike functions associated with the q-cosine function. Symmetry 2022, 14, 1117. [Google Scholar] [CrossRef]
- Kumar, S.; Breaz, D.; Cotirla, L.-I.; Çetinkaya, A. Hankel determinants of normalized analytic functions associated with hyperbolic secant function. Symmetry 2024, 16, 1303. [Google Scholar] [CrossRef]
- Ahmad, A.; Gong, J.; Al-Shbeil, I.; Rasheed, A.; Ali, A.; Hussain, S. Analytic functions related to a balloon-shaped domain. Fractal Fract. 2023, 7, 865. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Natalini, P.; Bernardini, A. A generalization of the Bernoulli polynomials. J. Appl. Math. 2003, 794908, 155–163. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Debye Functions. In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; 9th Printing: New York, NY, USA, 1972. [Google Scholar]
- Lemmon, E.W.; Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 2006, 51, 785–850. [Google Scholar] [CrossRef]
- El-Qadeem, A.H.; Mamon, M.A.; Elshazly, I.S. Application of Einstein function on bi-univalent functions defined on the unit disc. Symmetry 2022, 14, 758. [Google Scholar] [CrossRef]
- El-Qadeem, A.H.; Saleh, S.A.; Mamon, M.A. Bi-univalent function classes defined by using a second Einstein function. J. Function Spaces 2022, 3, 6933153. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J. Aspects of Contemporary Complex Analysis; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Studia Univ. Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Bansal, D.; Sokół, J. Coefficient bound for a new class of analytic and bi-univalent functions. J. Fract. Calc. Appl. 2014, 5, 122–128. [Google Scholar]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Matt. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Olatunji, S.O.; Ajai, P.T. On subclasses of bi-univalent functions of Bazilevic type involving linear and Salagean Operator. Inter. J. Pure Appl. Math. 2015, 92, 645–656. [Google Scholar]
- Srivastava, H.M.; Bulut, S.; Cagler, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013, 27, 831–842. [Google Scholar] [CrossRef]
- Joshi, S.; Joshi, S.; Pawar, H. On some subclasses of bi-univalent functions associated with pseudo-starlike function. J. Egyptian Math. Soc. 2016, 24, 522–525. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete–Szego problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 1–192. [Google Scholar] [CrossRef]
- Zaprawa, P. Estimates of initial coefficients for bi-univalent functions. Abst. Appl. Anal. 2014, 2014, 357480. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions, Grundlehen der Mathematischen Wissenschaften 259; Springer: New York, NY, USA, 1983. [Google Scholar]
- Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Qadeem, A.H.; Murugusundaramoorthy, G.; Halouani, B.; Elshazly, I.S.; Vijaya, K.; Mamon, M.A. On λ-Pseudo Bi-Starlike Functions Related to Second Einstein Function. Symmetry 2024, 16, 1429. https://doi.org/10.3390/sym16111429
El-Qadeem AH, Murugusundaramoorthy G, Halouani B, Elshazly IS, Vijaya K, Mamon MA. On λ-Pseudo Bi-Starlike Functions Related to Second Einstein Function. Symmetry. 2024; 16(11):1429. https://doi.org/10.3390/sym16111429
Chicago/Turabian StyleEl-Qadeem, Alaa H., Gangadharan Murugusundaramoorthy, Borhen Halouani, Ibrahim S. Elshazly, Kaliappan Vijaya, and Mohamed A. Mamon. 2024. "On λ-Pseudo Bi-Starlike Functions Related to Second Einstein Function" Symmetry 16, no. 11: 1429. https://doi.org/10.3390/sym16111429
APA StyleEl-Qadeem, A. H., Murugusundaramoorthy, G., Halouani, B., Elshazly, I. S., Vijaya, K., & Mamon, M. A. (2024). On λ-Pseudo Bi-Starlike Functions Related to Second Einstein Function. Symmetry, 16(11), 1429. https://doi.org/10.3390/sym16111429