Solvable Two-Dimensional Dirac Equation with Matrix Potential: Graphene in External Electromagnetic Field
Abstract
:1. Introduction
2. Asymmetric Intertwining for Two-Dimensional Dirac Equation in an Electromagnetic Field
3. SUSY Diagonalization by Means of Intertwining
4. From Diagonal Potential to Constant Potential by Means of Intertwining
4.1. Case A: The Parameters Are Real
- I.
- .
- II.
- III.
- IV.
- V.
- VI.
4.2. Case B:
4.3. Case C:
5. Wave Functions and Electromagnetic Fields
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silvestrov, P.G.; Efetov, K.B. Quantum dots in graphene. Phys. Rev. Lett. 2007, 98, 016802. [Google Scholar] [CrossRef] [PubMed]
- Silvestrov, P.G.; Efetov, K.B. Charge accumulation at the boundaries of a graphene strip induced by a gate voltage: Electrostatic approach. Phys. Rev. 2008, 77, 155436. [Google Scholar] [CrossRef]
- Matulis, A.; Peeters, F.M. Quasibound states of quantum dots in single and bilayer graphene. Phys. Rev. 2008, 77, 115423. [Google Scholar] [CrossRef]
- Jakubsky, V.; Kuru, S.; Negro, J. Carbon nanotubes in almost homogeneous transverse magnetic field: Exactly solvable model. J. Phys. A 2014, 47, 115307. [Google Scholar] [CrossRef]
- Jakubsky, V.; Krejcirik, D. Qualitative analysis of trapped Dirac fermions in graphene. Ann. Phys. 2014, 349, 268. [Google Scholar] [CrossRef]
- Jakubsky, V. Spectrally isomorphic Dirac systems: Graphene in electromagnetic field. Phys. Rev. 2015, 91, 045039. [Google Scholar] [CrossRef]
- Ioffe, M.V.; Nishnianidze, D.N. Zero Energy States for a Class of Two-Dimensional Potentials in Graphene. Mod. Phys. Lett. 2018, 32, 1850329. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197. [Google Scholar] [CrossRef]
- Neto, A.C.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of grapheme. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Abergel, D.S.L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of graphene: A theoretical perspective. Adv. Phys. 2010, 59, 261. [Google Scholar] [CrossRef]
- Katsnelson, M.I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20. [Google Scholar] [CrossRef]
- Peres, N.M.R.; Castro, E.V. Algebraic solution of a graphene layer in a transverse electric and perpendicular magnetic fields. J. Phys. Condens. Matt. 2007, 19, 406231. [Google Scholar] [CrossRef] [PubMed]
- Kuru, S.; Negro, J.; Nieto, L.M. Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields. J. Phys. Condens. Matt. 2009, 21, 455305. [Google Scholar] [CrossRef] [PubMed]
- Bardarson, J.H.; Titov, M.; Brouwer, P.W. Electrostatic confinement of electrons in an integrable graphene quantum dot. Phys. Rev. Lett. 2009, 102, 226803. [Google Scholar] [CrossRef]
- Hartmann, R.R.; Robinson, N.J.; Portnoi, M.E. Smooth electron waveguides in graphene. Phys. Rev. 2010, 81, 245431. [Google Scholar] [CrossRef]
- Downing, C.A.; Stone, D.A.; Portnoi, M.E. Zero-energy states in graphene quantum dots and rings. Phys. Rev. 2011, 84, 155437. [Google Scholar] [CrossRef]
- Hartmann, R.R.; Portnoi, M.E. Quasi-exact solution to the Dirac equation for the hyperbolic secant potential. Phys. Rev. 2014, 89, 012101. [Google Scholar] [CrossRef]
- Ghosh, P.; Roy, P. An analysis of the zero energy states in graphene. Phys. Lett. 2015, 380, 567. [Google Scholar] [CrossRef]
- Ho, C.-L.; Roy, P. mKdV equation approach to zero energy states of graphene. Eur. Phys. Lett. 2015, 112, 47004. [Google Scholar] [CrossRef]
- Downing, C.A.; Portnoi, M.E. Magnetic quantum dots and rings in two dimensions. Phys. Rev. 2016, 94, 045430. [Google Scholar] [CrossRef]
- Downing, C.A.; Portnoi, M.E. Massless Dirac fermions in two dimensions: Confinement in nonuniform magnetic fields. Phys. Rev. 2016, 94, 165407. [Google Scholar] [CrossRef]
- Downing, C.A.; Portnoi, M.E. Localization of massless Dirac particles via spatial modulations of the Fermi velocity. J. Phys. Condens. Matt. 2017, 29, 315301. [Google Scholar] [CrossRef] [PubMed]
- Downing, C.A.; Portnoi, M.E. Bielectron vortices in two-dimensional Dirac semimetals. Nat. Commun. 2017, 8, 897. [Google Scholar] [CrossRef] [PubMed]
- Cooper, F.; Khare, A.; Sukhatme, U. Supersymmetry and quantum mechanics. Phys. Rep. 1995, 251, 267. [Google Scholar] [CrossRef]
- David, J.; Fernández, C. Supersymmetric quantum mechanics. AIP Conf. Proc. 2010, 1287, 3–36. [Google Scholar]
- Andrianov, A.A.; Ioffe, M.V. Nonlinear supersymmetric quantum mechanics: Concepts and realizations. J. Phys. A Math. Theor. 2012, 45, 503001. [Google Scholar] [CrossRef]
- Midya, B.; Fernández, D.J. Dirac electron in graphene under supersymmetry generated magnetic fields. J. Phys. A Math. Theor. 2014, 47, 285302. [Google Scholar] [CrossRef]
- Schulze-Halberg, A.; Roy, P. Construction of zero-energy states in graphene through the supersymmetry formalism. J. Phys. 2017, 50, 365205. [Google Scholar] [CrossRef]
- Ho, C.-L.; Roy, P. On zero energy states in graphene. Eur. Phys. Lett. 2014, 108, 20004. [Google Scholar] [CrossRef]
- Jahani, D.; Shahbazy, F.; Setare, M.R. Magnetic dispersion of Dirac fermions in graphene under inhomogeneous field profiles. Eur. Phys. J. Plus 2018, 133, 328. [Google Scholar] [CrossRef]
- Schulze-Halberg, A.; Ojel, M. Darboux transformations for the massless Dirac equation with matrix potential: Construction of zero-energy states. Eur. Phys. J. Plus 2019, 134, 49. [Google Scholar] [CrossRef]
- Schulze-Halberg, A. First-order Darboux transformations for Dirac equations with arbitrary diagonal potential matrix in two dimensions. Eur. Phys. J. Plus 2021, 136, 790. [Google Scholar] [CrossRef]
- Ateş, I.B.; Kuru, Ş.; Negro, J. Graphene Dirac fermions in symmetric electric and magnetic fields: The case of an electric square well. Phys. Scr. 2023, 98, 015816. [Google Scholar] [CrossRef]
- Ioffe, M.V.; Nishnianidze, D.N.; Prokhvatilov, E.V. New solutions for graphene with scalar potentials by means of generalized intertwining. Eur. Phys. J. Plus 2019, 134, 450. [Google Scholar] [CrossRef]
- Contreras-Astorga, A.; Correa, F.; Jakubsky, V. Super-Klein tunneling of Dirac fermions through electrostatic gratings in graphene. Phys. Rev. 2020, 102, 115429. [Google Scholar] [CrossRef]
- Ioffe, M.V.; Nishnianidze, D.N. A new class of solvable two-dimensional scalar potentials for graphene. Eur. Phys. J. Plus 2022, 137, 1195. [Google Scholar] [CrossRef]
- Ioffe, M.V.; Nishnianidze, D.N. Generalization of SUSY intertwining relations: New exact solutions of Fokker-Planck equation. Eur. Phys. Lett. 2020, 129, 61001. [Google Scholar] [CrossRef]
- Cannata, F.; Ioffe, M.V.; Nishnianidze, D.N. New methods for the two-dimensional Schrödinger equation: SUSY-separation of variables and shape invariance. J. Phys. A Math. Gen. 2002, 35, 1389. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Exact Solutions of Ordinary Differential Equations; CRC Press: Hoboken, NJ, USA, 1995. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioffe, M.V.; Nishnianidze, D.N. Solvable Two-Dimensional Dirac Equation with Matrix Potential: Graphene in External Electromagnetic Field. Symmetry 2024, 16, 126. https://doi.org/10.3390/sym16010126
Ioffe MV, Nishnianidze DN. Solvable Two-Dimensional Dirac Equation with Matrix Potential: Graphene in External Electromagnetic Field. Symmetry. 2024; 16(1):126. https://doi.org/10.3390/sym16010126
Chicago/Turabian StyleIoffe, Mikhail V., and David N. Nishnianidze. 2024. "Solvable Two-Dimensional Dirac Equation with Matrix Potential: Graphene in External Electromagnetic Field" Symmetry 16, no. 1: 126. https://doi.org/10.3390/sym16010126