Sequencing the Entangled DNA of Fractional Quantum Hall Fluids
Abstract
:1. Introduction
2. Statement of the Problem
3. Some Basics Applications
3.1. Laughlin State
3.2. Jain-2/5 State
3.3. Tao–Thouless State
3.4. Thin Cylinder
4. Proof
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landau, L.D. On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 1937, 7, 19–32. [Google Scholar] [CrossRef]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef] [Green Version]
- Hansson, T.; Oganesyan, V.; Sondhi, S. Superconductors are topologically ordered. Ann. Phys. 2004, 313, 497–538. [Google Scholar] [CrossRef] [Green Version]
- Affleck, I.; Kennedy, T.; Lieb, E.H.; Tasaki, H. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 1987, 59, 799–802. [Google Scholar] [CrossRef]
- Fannes, M.; Nachtergaele, B.; Werner, R.F.; Fysica, I.T.; Leuven, U. Physk Finitely Correlated States on Quantum Spin Chains. Commun. Math. Phys. 1992, 490, 443–490. [Google Scholar] [CrossRef]
- Pollmann, F.; Turner, A.M.; Berg, E.; Oshikawa, M. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B 2010, 81, 064439. [Google Scholar] [CrossRef] [Green Version]
- Fidkowski, L.; Kitaev, A. Topological phases of fermions in one dimension. Phys. Rev. B 2011, 83, 075103. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Gu, Z.C.; Wen, X.G. Complete classification of one-dimensional gapped quantum phases in interacting spin systems. Phys. Rev. B 2011, 84, 235128. [Google Scholar] [CrossRef] [Green Version]
- Ogata, M.; Shiba, H. Bethe-ansatz wave function, momentum distribution, and spin correlation in the one-dimensional strongly correlated Hubbard model. Phys. Rev. B 1990, 41, 2326–2338. [Google Scholar] [CrossRef]
- Seidel, A.; Lee, P.A. Lightly doped dimerized spin chain in the one-dimensional t-J-J’ model. Phys. Rev. B-Condens. Matter Mater. Phys. 2004, 69, 094419. [Google Scholar] [CrossRef]
- Ribeiro, T.C.; Seidel, A.; Han, J.H.; Lee, D.H. The electronic states of two oppositely doped Mott insulators bilayers. Europhys. Lett. 2006, 76, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Kruis, H.V.; McCulloch, I.P.; Nussinov, Z.; Zaanen, J. Geometry and the hidden order of Luttinger liquids: The universality of squeezed space. Phys. Rev. B 2004, 70, 075109. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.; Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 1991, 360, 362–396. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States. Phys. Rev. Lett. 1983, 51, 605–608. [Google Scholar] [CrossRef]
- Trugman, S.A.; Kivelson, S. Exact results for the fractional quantum Hall effect with general interactions. Phys. Rev. B 1985, 31, 5280–5284. [Google Scholar] [CrossRef]
- Halperin, B. Theory of the quantized Hall conductance. Helv. Phys. Acta 1983, 56, 75–102. [Google Scholar] [CrossRef]
- Jain, J.K.; Kivelson, S.A.; Trivedi, N. Scaling theory of the fractional quantum Hall effect. Phys. Rev. Lett. 1990, 64, 1297–1300. [Google Scholar] [CrossRef]
- Rezayi, E.H.; MacDonald, A.H. Origin of the ν = 2/5 fractional quantum Hall effect. Phys. Rev. B 1991, 44, 8395–8398. [Google Scholar] [CrossRef]
- Greiter, M.; Wen, X.; Wilczek, F. Paired Hall states. Nucl. Phys. B 1992, 374, 567–614. [Google Scholar] [CrossRef]
- Read, N.; Rezayi, E. Quasiholes and fermionic zero modes of paired fractional quantum Hall states: The mechanism for non-Abelian statistics. Phys. Rev. B-Condens. Matter Mater. Phys. 1996, 54, 16864–16887. [Google Scholar] [CrossRef]
- Ardonne, E.; Read, N.; Rezayi, E.; Schoutens, K. Non-abelian spin-singlet quantum Hall states: Wave functions and quasihole state counting. Nucl. Phys. B 2001, 607, 549–576. [Google Scholar] [CrossRef] [Green Version]
- Simon, S.H.; Rezayi, E.H.; Cooper, N.R.; Berdnikov, I. Construction of a paired wave function for spinless electrons at filling fraction ν = 2/5. Phys. Rev. B 2007, 75, 075317. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Bandyopadhyay, S.; Seidel, A. Jain-2/5 parent Hamiltonian: Structure of zero modes, dominance patterns, and zero mode generators. Phys. Rev. B 2017, 95, 195169. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Chen, L.; Ahari, M.T.; Ortiz, G.; Nussinov, Z.; Seidel, A. Entangled Pauli principles: The DNA of quantum Hall fluids. Phys. Rev. B 2018, 98, 161118. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Ortiz, G.; Nussinov, Z.; Seidel, A. Local Two-Body Parent Hamiltonians for the Entire Jain Sequence. Phys. Rev. Lett. 2020, 124, 196803. [Google Scholar] [CrossRef]
- Greiter, M.; Wilczek, F. Adiabatic construction of hierarchical quantum Hall states. Phys. Rev. B 2021, 104, L121111. [Google Scholar] [CrossRef]
- Tanhayi Ahari, M.; Bandyopadhyay, S.; Nussinov, Z.; Seidel, A.; Ortiz, G. Partons as unique ground states of quantum Hall parent Hamiltonians: The case of Fibonacci anyons. arXiv 2022, arXiv:2204.09684. [Google Scholar]
- Nakamura, J.; Liang, S.; Gardner, G.C.; Manfra, M.J. Direct observation of anyonic braiding statistics. Nat. Phys. 2020, 16, 931–936. [Google Scholar] [CrossRef]
- Huber, M.; Grayson, M.; Rother, M.; Biberacher, W.; Wegscheider, W.; Abstreiter, G. Structure of a Single Sharp Quantum Hall Edge Probed by Momentum-Resolved Tunneling. Phys. Rev. Lett. 2005, 94, 016805. [Google Scholar] [CrossRef] [Green Version]
- Seidel, A.; Yang, K. Momentum-resolved tunneling into the Pfaffian and anti-Pfaffian edges. Phys. Rev. B 2009, 80, 241309. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Feldman, D.E. Transport in line junctions of ν = 52 quantum Hall liquids. Phys. Rev. B 2010, 81, 035318. [Google Scholar] [CrossRef]
- Jain, J.K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 1989, 63, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Jain, J.K. Incompressible quantum Hall states. Phys. Rev. B 1989, 40, 8079–8082. [Google Scholar] [CrossRef] [PubMed]
- Jain, J.K. Theory of the fractional quantum Hall effect. Phys. Rev. B 1990, 41, 7653–7665. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.G. Theory of the edge states in fractional quantum hall effects. Int. J. Mod. Phys. B 1992, 06, 1711–1762. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.H.; Shi, T.; Jain, J.K. Non-Abelian Parton Fractional Quantum Hall Effect in Multilayer Graphene. Nano Lett. 2017, 17, 4643–4647. [Google Scholar] [CrossRef] [Green Version]
- Balram, A.C.; Mukherjee, S.; Park, K.; Barkeshli, M.; Rudner, M.S.; Jain, J.K. Fractional Quantum Hall Effect at ν = 2 + 6/13: The Parton Paradigm for the Second Landau Level. Phys. Rev. Lett. 2018, 121, 186601. [Google Scholar] [CrossRef] [Green Version]
- Balram, A.C.; Barkeshli, M.; Rudner, M.S. Parton construction of a wave function in the anti-Pfaffian phase. Phys. Rev. B 2018, 98, 035127. [Google Scholar] [CrossRef] [Green Version]
- Balram, A.C. Abelian parton state for the ν = 4/11 fractional quantum Hall effect. Phys. Rev. B 2021, 103, 155103. [Google Scholar] [CrossRef]
- Stone, M. Schur functions, chiral bosons, and the quantum-Hall-effect edge states. Phys. Rev. B 1990, 42, 8399–8404. [Google Scholar] [CrossRef]
- Milovanović, M.; Read, N. Edge excitations of paired fractional quantum Hall states. Phys. Rev. B 1996, 53, 13559–13582. [Google Scholar] [CrossRef]
- Chen, L.; Bandyopadhyay, S.; Yang, K.; Seidel, A. Composite fermions in Fock space: Operator algebra, recursion relations, and order parameters. Phys. Rev. B 2019, 100, 045136. [Google Scholar] [CrossRef] [Green Version]
- Bernevig, B.A.; Haldane, F.D.M. Fractional Quantum Hall States and Jack Polynomials. Phys. Rev. Lett. 2007, 100, 246802. [Google Scholar] [CrossRef] [Green Version]
- Bernevig, B.A.; Haldane, F.D. Generalized clustering conditions of Jack polynomials at negative Jack parameter α. Phys. Rev. B-Condens. Matter Mater. Phys. 2008, 77, 184502. [Google Scholar] [CrossRef] [Green Version]
- Flavin, J.; Seidel, A. Abelian and Non-Abelian Statistics in the Coherent State Representation. Phys. Rev. X 2011, 1, 021015. [Google Scholar] [CrossRef] [Green Version]
- Seidel, A.; Fu, H.; Lee, D.H.; Leinaas, J.M.; Moore, J. Incompressible Quantum Liquids and New Conservation Laws. Phys. Rev. Lett. 2005, 95, 266405. [Google Scholar] [CrossRef] [Green Version]
- Mazaheri, T.; Ortiz, G.; Nussinov, Z.; Seidel, A. Zero modes, bosonization, and topological quantum order: The Laughlin state in second quantization. Phys. Rev. B 2015, 91, 085115. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, I. Symmetric Functions and Hall Polynomials; Oxford Classic Texts in the Physical Sciences; Clarendon Press: Oxford, UK, 1998. [Google Scholar]
- Seidel, A.; Yang, K. Halperin (m, m’,n) bilayer quantum Hall states on thin cylinders. Phys. Rev. Lett. 2008, 101, 036804. [Google Scholar] [CrossRef] [Green Version]
- Seidel, A.; Yang, K. Gapless excitations in the Haldane-Rezayi state: The thin-torus limit. Phys. Rev. B 2011, 84, 085122. [Google Scholar] [CrossRef] [Green Version]
- Rezayi, E.H.; Haldane, F.D.M. Laughlin state on stretched and squeezed cylinders and edge excitations in the quantum Hall effect. Phys. Rev. B 1994, 50, 17199–17207. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Thouless, D.J. Fractional quantization of Hall conductance. Phys. Rev. B 1983, 28, 1142–1144. [Google Scholar] [CrossRef]
- Lee, D.H.; Leinaas, J.M. Mott insulators without symmetry breaking. Phys. Rev. Lett. 2004, 92, 096401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, G.; Nussinov, Z.; Dukelsky, J.; Seidel, A. Repulsive Interactions in Quantum Hall Systems as a Pairing Problem. Phys. Rev. B 2013, 88, 165303. [Google Scholar] [CrossRef] [Green Version]
- Schossler, M.; Bandyopadhyay, S.; Seidel, A. Inner workings of fractional quantum Hall parent Hamiltonians: A matrix product state point of view. Phys. Rev. B 2022, 105, 155124. [Google Scholar] [CrossRef]
- Feigin, B.; Jimbo, M.; Miwa, T.; Mukhin, E. A differential ideal of symmetric polynomials spanned by Jack polynomials at β = −(r = 1)/(k + 1). Int. Math. Res. Not. 2002, 2002, 1223–1237. [Google Scholar] [CrossRef]
- Bergholtz, E.J.; Karlhede, A. Half-Filled Lowest Landau Level on a Thin Torus. Phys. Rev. Lett. 2005, 94, 026802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, A.; Lee, D.H. Abelian and Non-Abelian Hall Liquids and Charge-Density Wave: Quantum Number Fractionalization in One and Two Dimensions. Phys. Rev. Lett. 2006, 97, 056804. [Google Scholar] [CrossRef] [Green Version]
- Bergholtz, E.J.; Kailasvuori, J.; Wikberg, E.; Hansson, T.H.; Karlhede, A. Pfaffian quantum Hall state made simple: Multiple vacua and domain walls on a thin torus. Phys. Rev. B-Condens. Matter Mater. Phys. 2006, 74, 2–5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruise, J.R.; Seidel, A. Sequencing the Entangled DNA of Fractional Quantum Hall Fluids. Symmetry 2023, 15, 303. https://doi.org/10.3390/sym15020303
Cruise JR, Seidel A. Sequencing the Entangled DNA of Fractional Quantum Hall Fluids. Symmetry. 2023; 15(2):303. https://doi.org/10.3390/sym15020303
Chicago/Turabian StyleCruise, Joseph R., and Alexander Seidel. 2023. "Sequencing the Entangled DNA of Fractional Quantum Hall Fluids" Symmetry 15, no. 2: 303. https://doi.org/10.3390/sym15020303