Next Article in Journal
Excitation Function of Freeze-Out Parameters in Symmetric Nucleus–Nucleus and Proton–Proton Collisions at the Same Collision Energy
Next Article in Special Issue
Some Curvature Properties of Finsler Warped Product Metrics
Previous Article in Journal
Theoretical Aspects for Bayesian Predictions Based on Three-Parameter Burr-XII Distribution and Its Applications in Climatic Data
Previous Article in Special Issue
Concircular Vector Fields on Radical Anti-Invariant Lightlike Hypersurfaces of Almost Product-like Statistical Manifolds
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Certain Results on the Lifts from an LP-Sasakian Manifold to Its Tangent Bundle Associated with a Quarter-Symmetric Metric Connection

by
Mohammad Nazrul Islam Khan
1,
Fatemah Mofarreh
2,
Abdul Haseeb
3,* and
Mohit Saxena
4
1
Department of Computer Engineering, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia
2
Mathematical Science Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11546, Saudi Arabia
3
Department of Mathematics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
4
Department of Mathematics and Computer Sciences, The Papua New Guinea University of Technology, Lae 441, Papua New Guinea
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(8), 1553; https://doi.org/10.3390/sym15081553
Submission received: 17 July 2023 / Revised: 2 August 2023 / Accepted: 7 August 2023 / Published: 8 August 2023
(This article belongs to the Special Issue Symmetry and Its Application in Differential Geometry and Topology II)

Abstract

:
The purpose of this study is to examine the complete lifts from the symmetric and concircular symmetric n-dimensional Lorentzian para-Sasakian manifolds (briefly, ( L P S ) n ) to its tangent bundle T M associated with a Riemannian connection D C and a quarter-symmetric metric connection (QSMC) D ¯ C .

1. Introduction

In 1924, the theory of semi-symmetric linear connection on a differentiable manifold was given by Friedmann and Schouten [1]. Later, Hayden [2] introduced the concept of metric connection with torsion on a Riemannian manifold. Approximately five decades ago, Yano established a relation between the semi-symmetric metric connection and the Levi-Civita connection [3]. As a generalization of semi-symmetric connection, the idea of quarter-symmetric connection was proposed by Golab [4].
A linear connection D ¯ in a differentiable manifold M (dim M = n ) is said to be a quarter-symmetric connection [4] if its torsion tensor T is of the type
T ( β 1 , β 2 ) = D ¯ β 1 β 2 D ¯ β 2 β 1 [ β 1 , β 2 ] = η ( β 2 ) ϕ β 1 η ( β 1 ) ϕ β 2 ,
where η is a 1-form and ϕ is a tensor field of type (1, 1).
If the connection D ¯ satisfies the condition ( D ¯ β 1 g ) ( β 2 , β 3 ) = 0 , for all β 1 , β 2 , β 3 on M, then D ¯ is said to be a QSMC.
The study of semi-symmetric and quarter-symmetric connections was further developed by many geometers, such as [5,6,7,8,9,10,11,12], among many others.
On the other hand, Matsumoto [13] proposed the idea of LP-Sasakian manifolds in 1989. Subsequently, the same notion was independently introduced by Mihai and Rosca [14] and obtained a number of key results. Numerous geometers worked out on LP-Sasakian manifolds and contributed a number of interesting results. For more details, we refer [15,16,17,18,19] and the references therein.
In differential geometry, the tangent bundles play an important role to investigate the geometrical structures of the manifold and their properties such as integrability conditions, curvature conditions, partial differential equations etc. Yano and Ishihara [20] introduced and studied almost complex structures with some basic properties induced in tangent bundles. Recently, Khan et al. [8] studied the lifts of a QSMC from a Sasakian manifold to its tangent bundle T M . Li et al. [21,22,23,24,25,26,27,28,29,30,31] did a series of theoretic research and development and application of singularity theory and submanifolds theory etc., which also deepens relevant research subjects. For more detail studies about the subject we recommend the papers [32,33,34,35,36,37,38,39,40,41,42,43] and the reference therein.
In this paper, we investigate the complete lifts from ( L P S ) n to its tangent bundle T M associated with a connection D C and a QSMC D ¯ C . The following key conclusions are drawn:
  • We established the relationship between D C and D ¯ C on T M of an ( L P S ) n .
  • We derived the curvature tensor, the Ricci tensor and the scalar curvature associated with the connection D ¯ C on T M of an ( L P S ) n .
  • We proved that the tangent bundle T M of an ( L P S ) n is symmetric and ϕ C -symmetric with respect to (wrt) the connection D ¯ C if and only if it is so wrt D C .
  • We proved that the tangent bundle T M of an ( L P S ) n is concircular symmetric and concircular ϕ C -symmetric wrt D ¯ C if and only if it is so wrt D C .
  • We proved that the tangent bundle T M of an ( L P S ) n is concircular symmetric and concircular ϕ C -symmetric wrt D ¯ C if and only if it is symmetric wrt D C subject to r C constant.
Notations: 
Let 0 1 ( M ) , 1 0 ( M ) , 1 1 ( M ) be the set of vector fields, the set of 1-forms and the set of tensor fields of type (1,1) in M, respectively. Similarly, we assume that 0 1 ( T M ) , 1 0 ( T M ) , 1 1 ( T M ) be the set of vector fields, the set of 1-forms and the set of tensor fields of type (1,1) in the tangent bundle T M , respectively.

2. Preliminaries

A manifold M ( d i m M = n ) , endowed with a (1,1) tensor field ϕ , a vector field ξ , a 1-form η and a Lorentzian metric g is an ( L P S ) n if [13,14]:
η ( ξ ) = 1 ,
ϕ β 1 = β 1 + η ( β 1 ) ξ ,
g ( ϕ β 1 , ϕ β 2 ) = g ( β 1 , β 2 ) + η ( β 1 ) η ( β 2 ) ,
g ( β 1 , ξ ) = η ( β 1 ) ,
D β 1 ξ = ϕ β 1 ,
( D β 1 ϕ ) β 2 = g ( β 1 , β 2 ) ξ + η ( β 2 ) β 1 + 2 η ( β 1 ) η ( β 2 ) ξ ,
and
ϕ ξ = 0 , η ( ϕ β 1 ) = 0 , r a n k ϕ = n 1 .
If we put
Φ ( β 1 , β 2 ) = g ( β 1 , ϕ β 2 ) , β 1 , β 2 0 1 ( M ) ,
then Φ is a symmetric tensor field of type (2,0). As η is closed, then we infer [13,44]
( D β 1 η ) ( β 2 ) = Φ ( β 1 , β 2 ) , Φ ( β 1 , ξ ) = 0 ,
for all β 1 , β 2 0 1 ( M ) .
In an ( L P S ) n , we have
g ( R ( β 1 , β 2 ) β 3 , ξ ) = η ( R ( β 1 , β 2 ) β 3 ) = g ( β 2 , β 3 ) η ( β 1 ) g ( β 1 , β 3 ) η ( β 2 ) ,
R ( ξ , β 1 ) β 2 = g ( β 1 , β 2 ) ξ η ( β 2 ) β 1 ,
R ( β 1 , β 2 ) ξ = η ( β 2 ) β 1 η ( β 1 ) β 2 ,
S ( β 1 , ξ ) = ( n 1 ) η ( β 1 ) ,
S ( ϕ β 1 , ϕ β 2 ) = S ( β 1 , β 2 ) + ( n 1 ) η ( β 1 ) η ( β 2 ) ,
for all β 1 , β 2 , β 3 0 1 ( M ) , where R and S denote the Riemannian curvature tensor and the Ricci tensor of M, respectively.
In an M n , the curvature tensor R of D ¯ is given by
R ( β 1 , β 2 ) β 3 = D ¯ β 1 D ¯ β 2 β 3 D ¯ β 2 D ¯ β 1 β 3 D ¯ [ β 1 , β 2 ] β 3 .
Now let { j 1 , j 2 , j 3 . , j n = ξ } be a frame of orthonormal basis of the tangent space at any point of M n . Then we find S and r as follows:
S ( β 1 , β 2 ) = i = 1 n ϵ i g ( R ( j i , β 1 ) β 2 , j i ) ,
r = i = 1 n ϵ i S ( j i , j i ) ,
respectively, where r is the scalar curvature of M and ϵ i = g ( j i , j i ) = + 1 or −1.
Example 1. 
Let us consider a 3-manifold M 3 = { ( u , v , w ) : u , v , w 3 , w 0 } . Let j 1 , j 2 , j 3 be linearly independent vector fields on M 3 given by
j 1 = e w u , j 2 = e w a u v , j 3 = w = ξ ,
where a ( 0 ) is a constant. Let g be the Lorentzian metric and η be a 1-form on M 3 given by
g ( j 1 , j 2 ) = g ( j 1 , j 3 ) = g ( j 2 , j 3 ) = 0 , g ( j 1 , j 1 ) = g ( j 2 , j 2 ) = 1 , g ( j 3 , j 3 ) = 1
and
η ( j 3 ) = g ( j 3 , ξ ) , j 3 0 1 ( M ) .
Let ϕ be the (1,1) tensor field defined by ϕ j 1 = j 1 , ϕ j 2 = j 2 , ϕ j 3 = 0 . By using the linearity of ϕ and g, we acquire η ( ξ ) = 1 , ϕ 2 j 1 = j 1 + η ( j 1 ) ξ and g ( ϕ j 1 , ϕ j 2 ) = g ( j 1 , j 2 ) + η ( j 1 ) η ( j 2 ) .
Thus for j 3 = ξ , the structure ( ϕ , ξ , η , g ) is a Lorentzian paracontact structure on M 3 .
Let D be the Levi-Civita connection wrt the Lorentzian metric g, then we have
[ j 1 , j 2 ] = a e w j 2 , [ j 1 , j 3 ] = j 1 , [ j 2 , j 3 ] = j 2 .
By using the Koszul’s formula for the Lorentzian metric g, we infer
D j 1 j 1 = j 3 , D j 1 j 2 = 0 , D j 1 j 3 = j 1 ,
D j 2 j 1 = a e w j 2 , D j 2 j 2 = a e w j 1 j 3 , D j 2 j 3 = j 2 ,
D j 3 j 1 = 0 , D j 3 j 2 = 0 , D j 3 j 3 = 0 ,
( D j 1 ϕ ) j 2 = g ( j 1 , j 2 ) ξ + η ( j 2 ) j 1 + 2 η ( j 1 ) η ( j 2 ) ξ .
From the above relations, it can be easily seen that for j 3 = ξ , ( ϕ , ξ , η , g ) is an LP-Sasakian structure on M 3 . Consequently, M 3 ( ϕ , ξ , η , g ) is an ( L P S ) 3 .
Let j 1 C , j 2 C , j 3 C be the complete lifts and j 1 V , j 2 V , j 3 V be the vertical lifts on T M of j 1 , j 2 , j 3 on M 3 .
Let g C be the complete lift of the Lorentzian metric g on T M such that
g C ( ξ V , j 3 C ) = ( g C ( ξ , j 3 ) ) V = ( η ( ξ ) ) V ,
g C ( ξ C , j 3 C ) = ( g C ( ξ , j 3 ) ) C = ( η ( ξ ) ) C ,
g C ( j 3 C , j 3 C ) = 1 , g V ( ξ V , j 3 C ) = 0 , g V ( j 3 V , j 3 V ) = 0 ,
and so on.
Let ϕ C and ϕ V be the complete and vertical lifts of ϕ defined by
ϕ V ( j 1 V ) = j 1 V , ϕ C ( j 1 C ) = j 1 C ,
ϕ V ( j 2 V ) = j 2 V , ϕ C ( j 2 C ) = j 2 C ,
ϕ V ( j 3 V ) = ϕ C ( j 3 C ) = 0 .
By using the linearity of ϕ and g, we infer
( ϕ 2 ξ ) C = ξ C + η V ( ξ ) j 1 C + η C ( ξ ) j 3 V ,
g C ( ( ϕ j 1 ) C , ( ϕ j 2 ) C ) = g C ( j 1 C , j 2 C ) + ( η ( j 1 ) ) C ( η ( j 2 ) ) V + ( η ( j 1 ) ) V ( η ( j 2 ) ) C .
Thus, for j 3 = ξ in (20), (21) and (23), the structure ( ϕ C , ξ C , η C , g C ) is a Lorentzian paracontact structure on T M and satisfies the relation
( D j 1 C C ϕ C ) j 2 C = g C ( j 1 C , j 2 C ) ξ V + g C ( j 1 V , j 2 C ) ξ C + 2 { η C ( j 2 C ) j 1 V + η V ( j 2 C ) j 1 C } .
Then, ( ϕ C , ξ C , η C , g C , T M ) is an ( L P S ) 3 .
Definition 1. 
An ( L P S ) n wrt D is said to be symmetric if [45]
( D β 4 R ) ( β 1 , β 2 ) β 3 = 0 ,
for all β 1 , β 2 , β 3 , β 4 0 1 ( M ) .
Definition 2. 
An ( L P S ) n wrt D is said to be ϕ-symmetric if [45]
ϕ 2 ( D β 4 R ) ( β 1 , β 2 ) β 3 = 0 ,
for all β 1 , β 2 , β 3 , β 4 0 1 ( M ) .
Definition 3. 
An ( L P S ) n wrt D is said to be concircular symmetric if [45]
( D β 4 C ¯ ) ( β 1 , β 2 ) β 3 = 0 ,
for all β 1 , β 2 , β 3 , β 4 0 1 ( M ) , where C ¯ is the concircular curvature tensor given by [45]
C ¯ ( β 1 , β 2 ) β 3 = R ( β 1 , β 2 ) β 3 r n ( n 1 ) [ g ( β 2 , β 3 ) β 1 g ( β 1 , β 3 ) β 2 ] .
Definition 4. 
An ( L P S ) n is called concircular ϕ-symmetric if
ϕ 2 ( D β 4 C ¯ ) ( β 1 , β 2 ) β 3 = 0 ,
for all β 1 , β 2 , β 3 , β 4 0 1 ( M ) .

3. Lifts of a QSMC from an ( LPS ) n to Its TM

Let T M = p M T p M be the tangent bundle over the manifold M, where T p M denotes the set of all tangent vectors of the manifold M at a point p. Let β 1 , η , ϕ and D be a vector field, a 1-form, a tensor field of type (1,1) and an affine connection on the manifold M, respectively. Then, β 1 V , η V , ϕ V , D V and β 1 C , η C , ϕ C , D C are the vertical and complete lifts of a vector field, a 1-form, a tensor field of type (1,1) and an affine connection, respectively in T M [46,47].
The complete and vertical lifts by mathematical operators are given by
η V ( β 1 C ) = η C ( β 1 V ) = η ( β 1 ) V , η C ( β 1 C ) = η ( β 1 ) C , ϕ V β 1 C = ( ϕ β 1 ) V , ϕ C β 1 C = ( ϕ β 1 ) C , [ β 1 , β 2 ] V = [ β 1 C , β 2 V ] = [ β 1 V , β 2 C ] , [ β 1 , β 2 ] C = [ β 1 C , β 2 C ] , D β 1 C C β 2 C = ( D β 1 β 2 ) C , D β 1 C C β 2 V = ( D β 1 β 2 ) V .
Taking the complete lifts of (2)–(7), by mathematical operators we infer
η C ( ξ C ) = 1 , ( ϕ 2 β 1 ) C = β 1 C + η C ( β 1 C ) ξ V + η V ( β 1 C ) ξ C , g C ( ( ϕ β 1 ) C , ( ϕ β 2 ) C ) = g C ( β 1 C , β 2 C ) + η C ( β 1 C ) η V ( β 2 C ) + η V ( β 1 C ) η V ( β 2 C ) , g C ( β 1 C , ξ C ) = η C ( β 1 C ) ,
D β 1 C C ξ C = ( ϕ β 1 ) C ,
( D β 1 C C ϕ C ) β 2 C = g C ( β 1 C , β 2 C ) ξ C + η C ( β 2 C ) β 1 V + η V ( β 2 C ) β 1 C + 2 { η C ( β 1 C ) η C ( β 2 C ) ξ V + η C ( β 1 C ) η V ( β 2 C ) ξ C + η V ( β 1 C ) η C ( β 2 C ) ξ C ,
for all β 1 C , β 2 C 0 1 ( T M ) .
From (8)–(10), we have
( ϕ ξ ) C = 0 , η C ( ϕ β 1 ) C = 0 ,
Φ C ( β 1 C , β 2 C ) = g C ( β 1 C , ( ϕ β 2 ) C ) ,
( D β 1 C C η C ) ( β 2 C ) = Φ C ( β 1 C , β 2 C ) , Φ C ( β 1 C , ξ C ) = 0
for all β 1 C , β 2 C 0 1 ( T M ) , then Φ C ( β 1 C , β 2 C ) is a symmetric tensor field.
Now taking the complete lifts of (11)–(15), we have
g C ( R C ( β 1 C , β 2 C ) β 3 C , ξ C ) = η C ( R C ( β 1 C , β 2 C ) β 3 C ) = g C ( β 2 C , β 3 C ) η V ( β 1 C ) + g C ( β 2 V , β 3 C ) η C ( β 1 C ) g C ( β 1 C , β 3 C ) η V ( β 2 C ) g C ( β 1 V , β 3 C ) η C ( β 2 C ) , R C ( ξ C , β 1 C ) β 2 C = g C ( β 1 C , β 2 C ) ξ V + g C ( β 1 V , β 2 C ) ξ C η C ( β 2 C ) β 1 V η V ( β 2 C ) β 1 C , R C ( β 1 C , β 2 C ) ξ C = η C ( β 2 C ) β 1 V + η V ( β 2 C ) β 1 C η C ( β 1 C ) β 2 V η V ( β 1 C ) β 2 C , S C ( β 1 C , ξ C ) = ( n 1 ) η C ( β 1 C ) ,
S C ( ( ϕ β 1 ) C , ( ϕ β 2 ) C ) = S C ( β 1 C , β 2 C ) + ( n 1 ) { η C ( β 1 C ) η V ( β 2 C ) + η V ( β 1 C ) η V ( β 2 C ) } ,
for all β 1 C , β 2 C 0 1 ( T M ) , where R C and S C denote the complete lifts on T M of R and S, respectively.

4. An Expression of R ˜ C on TM of an ( LPS ) n

In this section, we establish the relationship between D C and D ¯ C on T M of an ( L P S ) n . Moreover, the curvature tensor R ˜ C , the Ricci tensor S ˜ C and the scalar curvature r ˜ C associated to D ¯ C on T M of an ( L P S ) n are derived.
Let M be an almost contact metric manifold with a Riemannian connection D and let T M be its tangent bundle. A linear connection D ¯ and the tensor H of type (1,1) are related by
D ¯ β 1 β 2 = D β 1 β 2 + H ( β 1 , β 2 ) .
For the connection D ¯ to be a QSMC in M, we have [4]
2 H ( β 1 , β 2 ) = T ( β 1 , β 2 ) + T ( β 2 , β 1 ) + T ( β 1 , β 2 ) ,
where
g ( T ( β 1 , β 2 ) , β 3 ) = g ( T ( β 3 , β 1 ) , β 2 ) .
From (1) and (33), it follows that
T ( β 1 , β 2 ) = η ( β 1 ) ϕ β 2 g ( β 1 , ϕ β 2 ) ξ .
By using (1) and (34) in (32), we obtain
H ( β 1 , β 2 ) = η ( β 2 ) ϕ β 1 g ( β 1 , ϕ β 2 ) ξ .
Thus, a QSMC D ¯ on an ( L P S ) n is expressed as
D ¯ β 1 β 2 = D β 1 β 2 + η ( β 2 ) ϕ β 1 g ( β 1 , ϕ β 2 ) ξ .
Taking the complete lifts of (1), (31)–(34), we have
T C ( β 1 C , β 2 C ) = D ¯ β 1 C C β 2 C D ¯ β 2 C C β 1 C [ β 1 C , β 2 C ] = η C ( β 2 C ) ( ϕ β 1 ) V + η V ( β 1 C ) ( ϕ β 2 ) C η C ( β 2 C ) ( ϕ β 1 ) V η V ( β 1 C ) ( ϕ β 2 ) C ,
D ¯ β 1 C C β 2 C = D β 1 C C β 2 C + H C ( β 1 C , β 2 C ) ,
where
H C ( β 1 C , β 2 C ) = 1 2 [ T C ( β 1 C , β 2 C ) + T C ( β 1 C , β 2 C ) + T C ( β 2 C , β 1 C ) ]
and
g C ( T C ( β 1 C , β 2 C ) , β 3 C ) = g C ( T C ( β 3 C , β 1 C ) , β 2 C )
for all β 1 , β 2 , β 3 0 1 ( M ) .
From (35) and (37), we acquire
T C ( β 1 C , β 2 C ) = η C ( β 1 C ) ( ϕ β 2 ) V + η V ( β 1 C ) ( ϕ β 2 ) C g C ( β 1 C , ( ϕ β 2 ) C ) ξ C g C ( β 1 C , ( ϕ β 2 ) V ) ξ C .
By using (35) and (38) in (36), we have
H C ( β 1 C , β 2 C ) = η C ( β 2 C ) ( ϕ β 1 ) V + η V ( β 2 C ) ( ϕ β 1 ) C g C ( β 1 C , ( ϕ β 2 ) C ) ξ C g C ( β 1 C , ( ϕ β 2 ) V ) ξ C ,
where H C is the complete lift of H.
Thus, a QSMC D ¯ C on T M of an ( L P S ) n wrt the Riemannian connection D C is given by
D ¯ β 1 C C β 2 = D β 1 C C β 2 C + η C ( β 2 C ) ( ϕ β 1 ) V + η V ( β 2 C ) ( ϕ β 1 ) C g C ( β 1 C , ( ϕ β 2 ) C ) ξ V g C ( β 1 V , ( ϕ β 2 ) C ) ξ C .
Thus, (39) is the relation between the connections D C and D ¯ C on T M of an ( L P S ) n . Hence, we state the following theorem:
Theorem 1. 
Let D ¯ be the QSMC on an ( L P S ) n and D ¯ C be the complete lift of D ¯ on T M of the manifold. Then, the relation between D C and D ¯ C on T M is given by ( 39 ) .
Let R ˜ be the curvature tensor wrt D ¯ on T M of an ( L P S ) n . Then the curvature tensor R ˜ C wrt D ¯ C on T M is defined by
R ˜ C ( β 1 C , β 2 C ) β 3 C = D ¯ β 1 C C D ¯ β 2 C C β 3 C D ¯ β 2 C C D ¯ β 1 C C β 3 C D ¯ [ β 1 C , β 2 C ] C β 3 C ,
where
R ˜ ( β 1 , β 2 ) β 3 = D ¯ β 1 D ¯ β 2 β 3 D ¯ β 2 D ¯ β 1 β 3 D ¯ [ β 1 , β 2 ] β 3 .
From (39) we can easily find
D ¯ β 1 C C D ¯ β 2 C C β 3 C = D ¯ β 1 C C D β 2 C C β 3 C D ¯ β 1 C C η C ( β 2 C ) ( ϕ β 3 ) V D ¯ β 1 C C η V ( β 2 C ) ( ϕ β 3 ) C .
From (39)–(41), we obtain
R ˜ C ( β 1 C , β 2 C ) β 3 C = R C ( β 1 C , β 2 C ) β 3 C + g C ( β 1 C , ( ϕ β 3 ) C ) ( ϕ β 2 ) V + g C ( β 1 V , ( ϕ β 3 ) C ) ( ϕ β 2 ) C g C ( β 2 C , ( ϕ β 3 ) C ) ( ϕ β 1 ) V g C ( β 2 V , ( ϕ β 3 ) C ) ( ϕ β 1 ) C + η V ( β 1 C ) g C ( β 2 C , β 3 C ) ξ C + η C ( β 1 C ) g C ( β 2 V , β 3 C ) ξ C + η C X C ) g C ( β 2 C , β 3 C ) ξ V η V ( β 2 C ) g C ( β 1 C , β 3 C ) ξ C η C ( β 2 C ) g C ( β 1 V , β 3 C ) ξ C η C Y C ) g C ( β 1 C , β 3 C ) ξ V { η V ( β 1 C ) η C ( β 3 C ) β 2 C + η C ( β 1 C ) η V ( β 3 C ) β 2 C + η C ( β 1 C ) η C ( β 3 C ) β 2 V η V ( β 2 C ) η C ( β 3 C ) β 1 C η C ( β 2 C ) η V ( β 3 C ) β 1 C η C ( β 2 C ) η C ( β 3 C ) β 1 V } ,
where R C ( β 1 C , β 2 C ) β 3 C is the curvature tensor of D C . Thus a relation between the curvature tensors of T M associated to D ¯ C and D C is given by (42).
From (42), we obtain the following relation
S ˜ C ( β 2 C , β 3 C ) = S C ( β 2 C , β 3 C ) g C ( β 2 C , ( ϕ β 3 ) C ) ψ V g C ( β 2 V , ( ϕ β 3 ) C ) ψ C + ( n 1 ) { η C ( β 2 C ) η V ( β 3 C ) + η V ( β 2 C ) η C ( β 3 C ) } .
On contracting (43), we lead to
r ˜ C = r C 2 ψ C ψ V ( n 1 ) , ψ = t r a c e ϕ ,
r ˜ C and r C represent the scalar curvatures of D ¯ C and D C , respectively.

5. Symmetry on TM of an ( LPS ) n wrt D ¯ C

An ( L P S ) n is called symmetric wrt D ¯ if [48]
( D ¯ β 4 R ˜ ) ( β 1 , β 2 ) β 3 = 0
for all β 1 , β 2 , β 3 , β 4 0 1 ( M ) .
Using (39), we have
( D ¯ β 4 C C R ˜ C ) ( β 1 C , β 2 C ) β 3 C = ( ( D β 4 R ˜ ) ( β 1 , β 2 ) β 3 ) C + η C ( R ˜ ( β 1 , β 2 ) β 3 ) C ( ϕ β 4 ) V + η V ( R ˜ ( β 1 , β 2 ) β 3 ) C ( ϕ β 4 ) C g C ( β 4 , ϕ R ˜ ( β 1 , β 2 ) β 3 ) C ξ V g C ( β 4 , ϕ R ˜ ( β 1 , β 2 ) β 3 ) C ξ V η C ( β 1 C ) ( R ˜ ) ( ϕ β 4 , β 2 ) β 3 ) V η V ( β 1 C ) ( R ˜ ) ( ϕ β 4 , β 2 ) β 3 ) C η C ( β 2 C ) ( R ˜ ) ( β 1 , ϕ β 4 ) β 3 ) V η V ( β 2 C ) ( R ˜ ) ( β 1 , ϕ β 4 ) β 3 ) C η C ( β 3 C ) ( R ˜ ( β 1 , β 2 ) ϕ β 4 ) V η V ( β 3 C ) ( R ˜ ( β 1 , β 2 ) ϕ β 4 ) C + g C ( β 4 C , ( ϕ β 1 ) C ) ( R ˜ ( ξ , β 2 ) β 3 ) V + g C ( β 4 V , ( ϕ β 1 ) C ) ( R ˜ ( ξ , β 2 ) β 3 ) C + g C ( β 4 C , ( ϕ β 2 ) C ) ( R ˜ ( β 1 , ξ ) β 3 ) V + g C ( β 4 V , ( ϕ β 2 ) C ) ( R ˜ ( β 1 , ξ ) β 3 ) C + g C ( β 4 C , ( ϕ β 3 ) C ) ( R ˜ ( β 1 , β 2 ) ξ ) V + g C ( β 4 V , ( ϕ β 3 ) C ) ( R ˜ ( β 1 , β 2 ) ξ ) C .
By differentiating (42) wrt β 4 and using (26), (27) and (30), we lead to
( D β 4 C C R ˜ C ) ( β 1 C , β 2 C ) β 3 C = ( ( D β 4 R ) ( β 1 , β 2 ) β 3 ) C + Θ C ( β 1 C , β 2 C , β 3 C , β 4 C ) ,
where
Θ C ( β 1 C , β 2 C , β 3 C , β 4 C ) = { η C ( β 2 C ) g C ( β 4 C , β 3 C ) ( ϕ β 1 ) V + η V ( β 2 C ) g C ( β 4 V , β 3 C ) ( ϕ β 1 ) C + η V ( β 2 C ) g C ( β 4 C , β 3 C ) ( ϕ β 1 ) C + η C ( β 3 C ) g C ( β 2 C , β 4 C ) ( ϕ β 1 ) V + η V ( β 3 C ) g C ( β 2 V , β 4 C ) ( ϕ β 1 ) C + η V ( β 3 C ) g C ( β 2 C , β 4 C ) ( ϕ β 1 ) C + 2 { η C ( β 2 C ) η C ( β 3 C ) η C ( β 4 C ) ( ϕ β 1 ) V + η C ( β 2 C ) η C ( β 3 C ) η V ( β 4 C ) ( ϕ β 1 ) C + η C ( β 2 C ) η V ( β 3 C ) η C ( β 4 C ) ( ϕ β 1 ) C + η V ( β 2 C ) η C ( β 3 C ) η C ( β 4 C ) ( ϕ β 1 ) C } + η C ( β 1 C ) g C ( β 4 C , β 3 C ) ( ϕ β 2 ) V + η V ( β 1 C ) g C ( β 4 V , β 3 C ) ( ϕ β 2 ) C + η V ( β 1 C ) g C ( β 4 C , β 3 C ) ( ϕ β 2 ) C + η C ( β 3 C ) g C ( β 2 C , β 4 C ) ( ϕ β 2 ) V + η V ( β 3 C ) g C ( β 2 V , β 4 C ) ( ϕ β 2 ) C + η V ( β 3 C ) g C ( β 2 C , β 4 C ) ( ϕ β 2 ) C + 2 { η C ( β 1 C ) η C ( β 3 C ) η C ( β 4 C ) ( ϕ β 2 ) V + η C ( β 1 C ) η C ( β 3 C ) η V ( β 4 C ) ( ϕ β 2 ) C + η C ( β 1 C ) η V ( β 3 C ) η C ( β 4 C ) ( ϕ β 2 ) C + η V ( β 1 C ) η C ( β 3 C ) η C ( β 4 C ) ( ϕ β 2 ) C + g C ( β 1 C , ( ϕ β 3 ) C ) g C ( β 4 C , β 2 C ) ξ V + g C ( β 1 C , ( ϕ β 3 ) C ) g C ( β 4 V , β 2 C ) ξ C + g C ( β 1 V , ( ϕ β 3 ) C ) g C ( β 4 C , β 2 C ) ξ C + g C ( β 1 C , ( ϕ β 3 ) C ) η C ( β 2 C ) β 4 V + g C ( β 1 C , ( ϕ β 3 ) C ) η V ( β 2 C ) β 4 C + 2 { g C ( β 1 C , ( ϕ β 3 ) C ) η C ( β 4 C ) η C ( β 4 C ) ξ V + g C ( β 1 C , ( ϕ β 3 ) C ) η C ( β 4 C ) η V ( β 4 C ) ξ C + g C ( β 1 C , ( ϕ β 3 ) C ) η V ( β 4 C ) η C ( β 4 C ) ξ C + g C ( β 1 V , ( ϕ β 3 ) C ) η C ( β 4 C ) η C ( β 4 C ) ξ C } g C ( β 2 C , ( ϕ β 3 ) C ) g C ( β 4 C , β 1 C ) ξ V g C ( β 2 C , ( ϕ β 3 ) C ) g C ( β 4 V , β 1 C ) ξ C g C ( β 2 V , ( ϕ β 3 ) C ) g C ( β 4 C , β 1 C ) ξ C g C ( β 2 C , ( ϕ β 3 ) C ) η C ( β 1 C ) β 4 V g C ( β 2 C , ( ϕ β 3 ) C ) η V ( β 1 C ) β 4 C 2 { g C ( β 2 C , ( ϕ β 3 ) C ) η C ( β 4 C ) η C ( β 4 C ) ξ V g C ( β 2 C , ( ϕ β 3 ) C ) η C ( β 4 C ) η V ( β 4 C ) ξ C g C ( β 2 C , ( ϕ β 3 ) C ) η V ( β 4 C ) η C ( β 4 C ) ξ C g C ( β 2 V , ( ϕ β 3 ) C ) η C ( β 4 C ) η C ( β 4 C ) ξ C } + g C ( β 4 C , ( ϕ β 1 ) C ) g C ( β 2 C , β 3 C ) ξ V + g C ( β 4 C , ( ϕ β 1 ) C ) g C ( β 2 V , β 3 C ) ξ C + g C ( β 4 V , ( ϕ β 1 ) C ) g C ( β 2 C , β 3 C ) ξ C g C ( β 4 C , ( ϕ β 2 ) C ) g C ( β 1 C , β 3 C ) ξ V g C ( β 4 C , ( ϕ β 2 ) C ) g C ( β 1 V , β 3 C ) ξ C g C ( β 4 V , ( ϕ β 2 ) C ) g C ( β 1 C , β 3 C ) ξ C + η C ( β 1 C ) g C ( β 2 C , β 3 C ) ( ϕ β 4 ) V + η C ( β 1 C ) g C ( β 2 V , β 3 C ) ( ϕ β 4 ) C + η V ( β 1 C ) g C ( β 2 C , β 3 C ) ( ϕ β 4 ) C η C ( β 2 C ) g C ( β 1 C , β 3 C ) ( ϕ β 4 ) V η C ( β 2 C ) g C ( β 1 V , β 3 C ) ( ϕ β 4 ) C η V ( β 2 C ) g C ( β 1 C , β 3 C ) ( ϕ β 4 ) C + g C ( β 4 C , ( ϕ β 2 ) C ) η C ( β 3 C ) β 1 V + g C ( β 4 C , ( ϕ β 2 ) C ) η V ( β 3 C ) β 1 C + g C ( β 4 V , ( ϕ β 2 ) C ) η C ( β 3 C ) β 1 C g C ( β 4 C , ( ϕ β 1 ) C ) η C ( β 3 C ) β 2 V g C ( β 4 C , ( ϕ β 1 ) C ) η V ( β 3 C ) β 2 C g C ( β 4 V , ( ϕ β 1 ) C ) η C ( β 3 C ) β 2 C + g C ( β 4 C , ( ϕ β 3 ) C ) η C ( β 2 C ) β 1 V + g C ( β 4 C , ( ϕ β 3 ) C ) η V ( β 2 C ) β 1 C + g C ( β 4 V , ( ϕ β 3 ) C ) η C ( β 2 C ) β 1 C g C ( β 4 C , ( ϕ β 3 ) C ) η C ( β 1 C ) β 2 V g C ( β 4 C , ( ϕ β 3 ) C ) η V ( β 1 C ) β 2 C g C ( β 4 V , ( ϕ β 3 ) C ) η C ( β 1 C ) β 2 C .
Using (25), (28) and (47) in (45), we infer
( D ¯ β 4 C C R ˜ C ) ( β 1 C , β 2 C ) β 3 C = ( D β 4 C C R C ) ( β 1 C , β 2 C ) β 3 C .
Thus, we have the following:
Theorem 2. 
The tangent bundle T M of an ( L P S ) n is symmetric wrt the connection D ¯ C if it is so wrt the connection D C .
Corollary 1. 
The tangent bundle T M of an ( L P S ) n is ϕ-symmetric wrt the connection D ¯ C if it is so wrt the connection D C .

6. Concircular Symmetry on TM of an ( LPS ) n wrt D ¯ C

An ( L P S ) n is called concircular symmetric wrt D ¯ if [48]
( D ¯ β 4 C ¯ ˜ ) ( β 1 , β 2 ) β 3 = 0 ,
for all β 1 , β 2 , β 3 , β 4 , where C ¯ ˜ is the concircular curvature tensor wrt D ¯ given by
C ¯ ˜ ( β 1 , β 2 ) β 3 = R ˜ ( β 1 , β 2 ) β 3 r ˜ n ( n 1 ) [ g ( β 2 , β 3 ) β 1 g ( β 1 , β 3 ) β 2 ] ,
where R ˜ is the Riemannian curvature tensor and r ˜ is the scalar curvature wrt D ¯ .
Taking the complete lift of (49) and using (39), we have
( D ¯ β 4 C C C ¯ ˜ C ) ( β 1 C , β 2 C ) β 3 C = ( D β 4 C C C ¯ ˜ C ) ( β 1 C , β 2 C ) β 3 C + η C ( C ¯ ˜ ) ( β 1 , β 2 ) β 3 ) C ( ϕ β 4 ) V + η V ( C ¯ ˜ ) ( β 1 , β 2 ) β 3 ) C ( ϕ β 4 ) C g C ( β 4 , ϕ C ¯ ˜ ) ( β 1 , β 2 ) β 3 ) C ξ V g V ( β 4 , ϕ C ¯ ˜ ) ( β 1 , β 2 ) β 3 ) C ξ C η C ( β 1 C ) ( C ¯ ˜ ) ( ϕ β 4 , β 2 ) β 3 ) V η V ( β 1 C ) ( C ¯ ˜ ) ( ϕ β 4 , β 2 ) β 3 ) C η C ( β 2 C ) ( C ¯ ˜ ) ( β 1 , ϕ β 4 ) β 3 ) V η V ( β 2 C ) ( C ¯ ˜ ) ( β 1 , ϕ β 4 ) β 3 ) C η C ( β 3 C ) ( C ¯ ˜ ) ( β 1 , β 2 ) ϕ β 4 ) V η V ( β 3 C ) ( C ¯ ˜ ) ( β 1 , β 2 ) ϕ β 4 ) C + g C ( β 4 C , ( ϕ β 1 ) C ) ( ( C ¯ ˜ ) ( ξ , β 2 ) β 3 ) C + g C ( β 4 C , ( ϕ β 2 ) C ) ( ( C ¯ ˜ ) ( β 1 , ξ ) β 3 ) C + g C ( β 4 C , ( ϕ β 3 ) C ) ( ( C ¯ ˜ ) ( β 1 , β 2 ) ξ ) C .
Now differentiating (49) wrt β 4 , we find
( D β 4 C C C ¯ ˜ C ) ( β 1 C , β 2 C ) β 3 C = ( D β 4 C C R ˜ C ) ( β 1 C , β 2 C ) β 3 C D β 4 C C r ˜ C n ( n 1 ) { g C ( β 2 C , β 3 C ) β 1 V + g C ( β 2 V , β 3 C ) β 1 C g C ( β 1 C , β 3 C ) β 2 V g C ( β 1 V , β 3 C ) β 2 C } .
By using (24), (44) and (47) in (51), we have
( D β 4 C C C ¯ ˜ C ) ( β 1 C , β 2 C ) β 3 C = ( ( D β 4 C ¯ ) ( β 1 , β 2 ) β 3 ) ) C Θ C ( β 1 C , β 2 C , β 3 C , β 4 C ) D β 4 C C r C 2 ( ψ C D β 4 C C ψ V + ψ C D β 4 C C ψ V ) n ( n 1 ) · { g C ( β 2 C , β 3 C ) β 1 V + g C ( β 2 V , β 3 C ) β 1 C g C ( β 1 C , β 3 C ) β 2 V g C ( β 1 V , β 3 C ) β 2 C } .
Now, by using (25), (28) and (52) in (50), we arrive at
( D β 4 C C C ¯ C ) ( β 1 C , β 2 C ) β 3 C = ( ( D β 4 C C ¯ ˜ ) ( β 1 , β 2 ) β 3 ) ) C D β 4 C C r C 2 ( ψ C D β 4 C C ψ V + ψ C D β 4 C C ψ V ) n ( n 1 ) { g C ( β 2 C , β 3 C ) β 1 V + g C ( β 2 V , β 3 C ) β 1 C g C ( β 1 C , β 3 C ) β 2 V g C ( β 1 V , β 3 C ) β 2 C } .
Hence, we have the following:
Theorem 3. 
The tangent bundle T M of an ( L P S ) n is concircular symmetric wrt D ¯ C if it is so wrt D C .
Corollary 2. 
The tangent bundle T M of an ( L P S ) n  M is concircular ϕ-symmetric wrt D ¯ C if it is so wrt D C .
By making use of (2), (8) and (52) in (50), it follows that
( D ¯ β 4 C C C ¯ ˜ C ) ( β 1 C , β 2 C ) β 3 C = ( D β 4 C C R C ) ( β 1 C , β 2 C ) β 3 C D β 4 C C r ˜ C n ( n 1 ) { g C ( β 2 C , β 3 C ) β 1 V + g C ( β 2 V , β 3 C ) β 1 C g C ( β 1 C , β 3 C ) β 2 V g C ( β 1 V , β 3 C ) β 2 C } .
If r is constant, then (53) takes the form
( D ¯ β 4 C C C ¯ ˜ C ) ( β 1 C , β 2 C ) β 3 C = ( D β 4 C C R C ) ( β 1 C , β 2 C ) β 3 C + 2 ( ψ C D β 4 C C ψ V + ψ C D β 4 C C ψ V ) n ( n 1 ) .
Hence, we have the following:
Theorem 4. 
The tangent bundle T M of an ( L P S ) n is concircular symmetric wrt D ¯ C if it is symmetric wrt D C subject to r C constant.
Corollary 3. 
The tangent bundle T M of an ( L P S ) n is concircular ϕ C -symmetric wrt D ¯ C if it is symmetric wrt D C subject to r C constant.

Author Contributions

Conceptualization, M.N.I.K., A.H., F.M. and M.S.; methodology, M.N.I.K., A.H., F.M. and M.S.; investigation, M.N.I.K., A.H., F.M. and M.S.; writing—original draft preparation, M.N.I.K., A.H. and F.M.; writing—review and editing, M.N.I.K., A.H. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding

The author, F.M., expresses her gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R27), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are thankful to the editor and anonymous referees for the constructive comments given to improve the quality of the paper. The second author, Fatemah Mofarreh, expresses her gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R27), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Friedmann, A.; Schouten, J.A. Uber die geometrie der halbsymmetrischen Ubertragung. Math. Z. 1924, 21, 211–223. [Google Scholar] [CrossRef]
  2. Hayden, H.A. Subspaces of a space with torsion. Proc. Lond. Math. Soc. 1932, 34, 27–50. [Google Scholar] [CrossRef]
  3. Yano, K. On semi-symmetric metric connections. Rev. Roum. Math. Pures Appl. 1970, 15, 1579–1586. [Google Scholar]
  4. Golab, S. On semi-symmetric and quarter-symmetric linear connections. Tensor 1975, 29, 249–254. [Google Scholar]
  5. Bahadir, O.; Choudhary, M.A.; Pandey, S. LP-Sasakian manifolds with generalized symmetric metric connection. Novi Sad J. Math. 2020, 50, 75–87. [Google Scholar] [CrossRef]
  6. Choudhary, M.A.; Khedher, K.M.; Bahadir, O.; Siddiqi, M.D. On golden Lorentzian manifolds equipped with generalized symmetric metric connection. Mathematics 2021, 9, 2430. [Google Scholar] [CrossRef]
  7. De, U.C.; Sengupta, J. Quarter-symmetric metric connection on a Sasakian manifold. Commun. Fac. Sci. Univ. Ank. Ser. 2000, 49, 7–13. [Google Scholar] [CrossRef]
  8. Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
  9. Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent bundles of P-Sasakian manifolds endowed with a quarter-symmetric metric connection. Symmetry 2023, 15, 753. [Google Scholar] [CrossRef]
  10. Kumar, K.T.P.; Venkatesha; Bagewadi, C.S. On ϕ-recurrent para-Sasakian manifold admitting quarter-symmetric metric connection. ISRN Geom. 2012, 2012, 317253. [Google Scholar]
  11. Rastogi, S.C. On quarter-symmetric metric connection. C. R. Acad. Sci. Bulg. 1978, 31, 811–814. [Google Scholar]
  12. Yano, K.; Imai, T. Quarter-symmetric metric connections and their curvature tensors. Tensor 1982, 38, 13–18. [Google Scholar]
  13. Matsumoto, K. On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Nat. Sci. 1989, 12, 151–156. [Google Scholar]
  14. Mihai, I.; Rosca, R. On Lorentzian P-Sasakian Manifolds, Classical Analysis; World Scientific Publ.: Singapore, 1992; pp. 155–169. [Google Scholar]
  15. Prasad, R.; Haseeb, A. On a Lorentzian para-Sasakian manifold with respect to the quarter symmetric-metric connection. Novi Sad Math. 2016, 46, 103–116. [Google Scholar]
  16. Ozgur, C.; Ahmad, M.; Haseeb, A. CR-submanifolds of an LP-Sasakian manifold with a semi-symmetric metric connection. Hacet. J. Math. Stat. 2010, 39, 489–496. [Google Scholar]
  17. Matsumoto, K.; Mihai, I. On a certain transformation in a Lorentzian para-Sasakian manifold. Tensor 1988, 47, 189–197. [Google Scholar]
  18. Shaikh, A.A.; Biswas, S. On LP-Sasakian manifolds. Bull. Malays. Math. Sci. Soc. 2004, 27, 17–26. [Google Scholar]
  19. Tripathi, M.M.; De, U.C. Lorentzian almost paracontact manifolds and their submanifolds. J. Korean Soc. Math. Educ. 2001, 2, 101–125. [Google Scholar] [CrossRef]
  20. Yano, K.; Ishihara, S. Almost complex structures induced in tangent bundles. Kodai Math. Sem. Rep. 1967, 19, 1–27. [Google Scholar] [CrossRef]
  21. Li, Y.; Laurian-Ioan, P.; Alqahtani, L.; Alkhaldi, A.; Ali, A. Zermelo’s navigation problem for some special surfaces of rotation. AIMS Math. 2023, 8, 16278–16290. [Google Scholar] [CrossRef]
  22. Li, Y.; Alkhaldi, A.; Ali, A.; Abdel-Baky, R.A.; Saad, M.K. Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space. AIMS Math. 2023, 8, 13875–13888. [Google Scholar] [CrossRef]
  23. Li, Y.; Srivastava, S.K.; Mofarreh, F.; Kumar, A.; Ali, A. Ricci Soliton of CR-Warped Product Manifolds and Their Classifications. Symmetry 2023, 15, 976. [Google Scholar] [CrossRef]
  24. Li, Y.; Caliskan, A. Quaternionic Shape Operator and Rotation Matrix on Ruled Surfaces. Axioms 2023, 12, 486. [Google Scholar] [CrossRef]
  25. Li, Y.; Gezer, A.; Karakaş, E. Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Math. 2023, 8, 17335–17353. [Google Scholar] [CrossRef]
  26. Li, Y.; Eren, K.; Ersoy, S. On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space. AIMS Math. 2023, 8, 22256–22273. [Google Scholar] [CrossRef]
  27. Li, Y.; Bhattacharyya, S.; Azami, S.; Saha, A.; Hui, S.K. Harnack Estimation for Nonlinear, Weighted, Heat-Type Equation along Geometric Flow and Applications. Mathematics 2023, 11, 2516. [Google Scholar] [CrossRef]
  28. Li, Y.; Kumara, H.A.; Siddesha, M.S.; Naik, D.M. Characterization of Ricci Almost Soliton on Lorentzian Manifolds. Symmetry 2023, 15, 1175. [Google Scholar] [CrossRef]
  29. Li, Y.; Gupta, M.K.; Sharma, S.; Chaubey, S.K. On Ricci Curvature of a Homogeneous Generalized Matsumoto Finsler Space. Mathematics 2023, 11, 3365. [Google Scholar] [CrossRef]
  30. Li, Y.; Güler, E. A Hypersurfaces of Revolution Family in the Five-Dimensional Pseudo-Euclidean Space E 2 5 . Mathematics 2023, 11, 3427. [Google Scholar] [CrossRef]
  31. Li, Y.; Abolarinwa, A.; Alkhaldi, A.; Ali, A. Some Inequalities of Hardy Type Related to Witten-Laplace Operator on Smooth Metric Measure Spaces. Mathematics 2022, 10, 4580. [Google Scholar] [CrossRef]
  32. Li, Y.; Haseeb, A.; Ali, M. LP-Kenmotsu Manifolds Admitting η-Ricci solitons and spacetime. J. Math. 2022, 2022, 6605127. [Google Scholar] [CrossRef]
  33. Wang, G.; Yu, D.; Guan, L. Neural network interpolation operators of multivariate functions. J. Comput. Anal. Math. 2023, 431, 115266. [Google Scholar] [CrossRef]
  34. Qian, Y.; Yu, D. Rates of approximation by neural network interpolation operators. Appl. Math. Comput. 2022, 41, 126781. [Google Scholar] [CrossRef]
  35. Dida, H.M.; Hathout, F. Ricci soliton on the tangent bundle with semi-symmetric metric connection. Bull. Transilv. Univ. Bras. Ser. III Math. Comput. Sci. 2021, 1, 37–52. [Google Scholar] [CrossRef]
  36. Dida, H.M.; Ikemakhen, A. A class of metrics on tangent bundles of pseudo-Riemannian manifolds. Arch. Math. (BRNO) Tomus 2011, 47, 293–308. [Google Scholar]
  37. Dida, H.M.; Hathout, F.; Djaa, M. On the geometry of the second order tangent bundle with the diagonal lift metric. Int. J. Math. Anal. 2009, 3, 443–456. [Google Scholar]
  38. Khan, M.N.I.; De, U.C. Liftings of metallic structures to tangent bundles of order r. AIMS Math. 2022, 7, 7888–7897. [Google Scholar] [CrossRef]
  39. Khan, M.N.I.; De, U.C. Lifts of metallic structure on a cross-section. Filomat 2022, 36, 6369–6373. [Google Scholar] [CrossRef]
  40. Omran, T.; Sharffuddin, A.; Husain, S.I. Lift of structures on manifold. Publ. L’Institut. Math. 1984, 36, 93–97. [Google Scholar]
  41. Peyghan, E.; Firuzi, F.; De Chand, U. Golden Riemannian structures on the tangent bundle with g-natural metrics. Filomat 2019, 33, 2543–2554. [Google Scholar] [CrossRef]
  42. Altunbaş, M. Ricci solitons on tangent bundles with the complete lift of a projective semi-symmetric connection. Gulf J. Math. 2023, 14, 8–15. [Google Scholar] [CrossRef]
  43. Tekkoyun, M. On lifts of paracomplex structures. Turk. Math. 2006, 30, 197–210. [Google Scholar]
  44. Mihai, I.; Shaikh, A.A.; De, U.C. On Lorentzian para-Sasakian manifolds. Rendiconti del Seminario Matematico di Messina. Ser. II Suppl. 1999, 3, 149–158. [Google Scholar]
  45. Yano, K. Concircular geometry I, Concircular transformations. Proc. Imp. Acad. 1940, 16, 195–200. [Google Scholar] [CrossRef]
  46. Yano, K.; Ishihara, S. Tangent and Cotangent Bundles; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
  47. Khan, M.N.I. Tangent bundle endowed with semi-symmetric non-metric connection on a Riemannian manifold. Facta Univ. (Nis) Ser. Math. Inform. 2020, 36, 855–878. [Google Scholar]
  48. Venkatesha, K.; Kumar, T.P.; Bagewadi, C.S. On quarter-symmetric metric connection in a Lorentzian para-Sasakian manifold. Azerbaijan J. Math. 2015, 5, 1–12. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, M.N.I.; Mofarreh, F.; Haseeb, A.; Saxena, M. Certain Results on the Lifts from an LP-Sasakian Manifold to Its Tangent Bundle Associated with a Quarter-Symmetric Metric Connection. Symmetry 2023, 15, 1553. https://doi.org/10.3390/sym15081553

AMA Style

Khan MNI, Mofarreh F, Haseeb A, Saxena M. Certain Results on the Lifts from an LP-Sasakian Manifold to Its Tangent Bundle Associated with a Quarter-Symmetric Metric Connection. Symmetry. 2023; 15(8):1553. https://doi.org/10.3390/sym15081553

Chicago/Turabian Style

Khan, Mohammad Nazrul Islam, Fatemah Mofarreh, Abdul Haseeb, and Mohit Saxena. 2023. "Certain Results on the Lifts from an LP-Sasakian Manifold to Its Tangent Bundle Associated with a Quarter-Symmetric Metric Connection" Symmetry 15, no. 8: 1553. https://doi.org/10.3390/sym15081553

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop