Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach
Abstract
1. Introduction
2. Problem Formulation
3. The Approximate Solution and the Neural Network Modeling
4. The Optimization Problem
5. The Cuckoo Search Algorithm
Hybrid Cuckoo Search
6. Procedure
- First, we define a neural network series solution which approximates the given THNF model.
- In the series solution we have random weights to be determined.
- To obtain a better approximate solution, we need to find the best set of weights.
- We define a fitness function as the mean squared error to convert the given system with the boundary conditions to an optimization problem, so that we obtain the best set of weights.
- To tackle the fitness function, we apply the HCS-ANN.
7. Results and Discussion
Validation of Results
8. Conclusions
- The impact of the cylinder-shaped nanoparticles play a key role in the heat transfer enhancements.
- The blade-shaped nanoparticles are opposing the heat transfer, while the gradient of the velocity (f) and the fluid motion (g) in the boundary layer increases with increasing values.
- The radiation parameter enhances the thermal profile with increasing values. A similar trend may be observed for the cylinder-shaped nanoparticles .
- The radiation parameter enhances the thermal profile.
- The implemented technique’s (HCS-ANN) efficiency has been proved through graphs and tables.
- The results of the proposed problem are validated through statistical graphs, such as regression analysis.
- The validation of the results show that HCS-ANN is the best for the solution of nonlinear problems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tagawa, T. Symmetry in Fluid Flow. Symmetry 2023, 15, 653. [Google Scholar] [CrossRef]
- Ishtiaq, B.; Zidan, A.M.; Nadeem, S.; Alaoui, M.K. Scrutinization of MHD stagnation point flow in hybrid nanofluid based on the extended version of Yamada-Ota and Xue models. Ain Shams Eng. J. 2023, 14, 101905. [Google Scholar] [CrossRef]
- Akhter, R.; Ali, M.M.; Alim, M. Entropy generation due to hydromagnetic buoyancy-driven hybrid-nanofluid flow in partially heated porous cavity containing heat conductive obstacle. Alex. Eng. J. 2023, 62, 17–45. [Google Scholar] [CrossRef]
- Das, S.K.; Choi, S.U.; Patel, H.E. Heat transfer in nanofluids—A review. Heat Transf. Eng. 2006, 27, 3–19. [Google Scholar] [CrossRef]
- Choi, S.U. Nanofluids: From vision to reality through research. J. Heat Transfer. 2009, 131, 033106. [Google Scholar] [CrossRef]
- Yu, W.; France, D.M.; Routbort, J.L.; Choi, S.U. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf. Eng. 2008, 29, 432–460. [Google Scholar] [CrossRef]
- Wong, K.V.; De Leon, O. Applications of nanofluids: Current and future. Adv. Mech. Eng. 2010, 2, 519659. [Google Scholar] [CrossRef]
- Shah, T.R.; Ali, H.M. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review. Solar Energy 2019, 183, 173–203. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Jamil, M.M.; Japar, W.M.A.A.; Adamu, I.M. A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 80, 1112–1122. [Google Scholar] [CrossRef]
- Moldoveanu, G.M.; Huminic, G.; Minea, A.A.; Huminic, A. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int. J. Heat Mass Transf. 2018, 127, 450–457. [Google Scholar] [CrossRef]
- Babar, H.; Ali, H.M. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 2019, 281, 598–633. [Google Scholar] [CrossRef]
- Sahoo, R.R. Experimental study on the viscosity of hybrid nanofluid and development of a new correlation. Heat Mass Transf. 2020, 56, 3023–3033. [Google Scholar] [CrossRef]
- Sahoo, R.R. Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid. J. Therm. Anal. Calorim. 2021, 146, 827–839. [Google Scholar] [CrossRef]
- Xuan, Z.; Zhai, Y.; Ma, M.; Li, Y.; Wang, H. Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids. J. Mol. Liq. 2021, 323, 114889. [Google Scholar] [CrossRef]
- Mousavi, S.; Esmaeilzadeh, F.; Wang, X. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid: Experimental investigation. J. Therm. Anal. Calorim. 2019, 137, 879–901. [Google Scholar] [CrossRef]
- Adun, H.; Mukhtar, M.; Adedeji, M.; Agwa, T.; Ibrahim, K.H.; Bamisile, O.; Dagbasi, M. Synthesis and application of ternary nanofluid for photovoltaic-thermal system: Comparative analysis of energy and exergy performance with single and hybrid nanofluids. Energies 2021, 14, 4434. [Google Scholar] [CrossRef]
- Kashyap, S.; Sarkar, J.; Kumar, A. Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids. Energy 2021, 225, 120199. [Google Scholar] [CrossRef]
- Manjunatha, S.; Puneeth, V.; Gireesha, B.; Chamkha, A. Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. J. Appl. Comput. Mech. 2022, 8, 1279–1286. [Google Scholar]
- Nazir, U.; Sohail, M.; Hafeez, M.B.; Krawczuk, M. Significant production of thermal energy in partially ionized hyperbolic tangent material based on ternary hybrid nanomaterials. Energies 2021, 14, 6911. [Google Scholar] [CrossRef]
- Ahmed, W.; Kazi, S.N.; Chowdhury, Z.Z.; Johan, M.R.B.; Mehmood, S.; Soudagar, M.E.M.; Mujtaba, M.; Gul, M.; Ahmad, M.S. Heat transfer growth of sonochemically synthesized novel mixed metal oxide ZnO+Al2O3+TiO2/DW based ternary hybrid nanofluids in a square flow conduit. Renew. Sustain. Energy Rev. 2021, 145, 111025. [Google Scholar] [CrossRef]
- Sahoo, R.R. Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder Technol. 2020, 370, 19–28. [Google Scholar] [CrossRef]
- Khan, J.A.; Mustafa, M.; Hayat, T.; Alsaedi, A. On three-dimensional flow and heat transfer over a non-linearly stretching sheet: Analytical and numerical solutions. PLoS ONE 2014, 9, e107287. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, R.; Das, U.J.; Ceruti, A.; Piancastelli, L.; Frizziero, L.; Zanuccoli, G.; Daidzic, N.; Rocchi, I.; Casano, G.; Piva, S.; et al. Visco-elastic effects on the three dimensional hydrodynamic flow past a vertical porous plate. Int. Inf. Eng. Technol. Assoc. 2013, 31, 1–8. [Google Scholar]
- Samanpour, H.; Ahmadi, N.; Jabbary, A. Effects of applying brand-new designs on the performance of PEM fuel cell and water flooding phenomena. Iran. J. Chem. Chem. Eng. 2022, 41, 618–635. [Google Scholar]
- Zhang, S.; Pei, Y.; Zhao, Z.; Guan, C.; Wu, G. Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption. J. Colloid Interface Sci. 2023, 630, 453–464. [Google Scholar] [CrossRef]
- Shoaib, M.; Naz, S.; Nisar, K.S.; Raja, M.A.Z.; Aslam, S.; Ahmad, I. MHD casson nanofluid in darcy-forchheimer porous medium in the presence of heat source and arrhenious activation energy: Applications of neural networks. Int. J. Model. Simul. 2023, 43, 438–461. [Google Scholar] [CrossRef]
- Hasnain, J.; Abid, N. Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet. Numer. Heat Transf. Part A Appl. 2023, 83, 1365–1376. [Google Scholar] [CrossRef]
- Abid, N.; Ramzan, M.; Chung, J.D.; Kadry, S.; Chu, Y.M. Comparative analysis of magnetized partially ionized copper, copper oxide–water and kerosene oil nanofluid flow with Cattaneo–Christov heat flux. Sci. Rep. 2020, 10, 19300. [Google Scholar] [CrossRef]
- Chen, K.Z.; Leung, Y.; Leung, K.S.; Gao, X.B. A neural network for solving nonlinear programming problems. Neural Comput. Appl. 2002, 11, 103–111. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Dillon, J.D.; O’Malley, M.J. A Lagrangian augmented Hopfield network for mixed integer non-linear programming problems. Neurocomputing 2002, 42, 323–330. [Google Scholar] [CrossRef]
- Dua, V. A mixed-integer programming approach for optimal configuration of artificial neural networks. Chem. Eng. Res. Des. 2010, 88, 55–60. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
Property | Ternary Hybrid Nanofluid |
---|---|
Density | , |
Heat capacity | |
, | |
Dynamic viscosity | , |
, | |
, | |
, | |
Blade-shaped nanoparticles , | |
Cylindrical nanoparticles , | |
Platelet-shaped nanoparticles |
Base Fluid/Nanoparticles | Shape | |||
---|---|---|---|---|
Water | 997.1 | 4179 | 0.613 | - |
2270 | 730 | 1.4013 | Blade | |
8933 | 385 | 401 | Platelet | |
5060 | 397.746 | 34.5 | Cylinder |
Error | Error | Error | ||||
---|---|---|---|---|---|---|
0 | 0.999997 | 1.000194 | 0.999962 | 3.52 × 10 | 2.49 × 10 | 1.37 × 10 |
0.5 | 0.64857 | 0.641643 | 0.639839 | 4.28 × 10 | 8.64 × 10 | 1.45 × 10 |
1 | 0.420625 | 0.411592 | 0.409277 | 2.59 × 10 | 3.49 × 10 | 3.24 × 10 |
1.5 | 0.272804 | 0.264031 | 2.62 × 10 | 1.15 × 10 | 2.52 × 10 | 1.41 × 10 |
2 | 0.176854 | 0.169352 | 0.167258 | 1.69 × 10 | 2.37 × 10 | 8.01 × 10 |
2.5 | 0.114714 | 0.108549 | 0.106688 | 6.15 × 10 | 4.05 × 10 | 3.73 × 10 |
3 | 0.074399 | 0.069509 | 0.067887 | 1.85 × 10 | 5.32 × 10 | 8.44 × 10 |
3.5 | 0.048098 | 0.04448 | 0.043128 | 8.22 × 10 | 1.42 × 10 | 5.69 × 10 |
4 | 0.030924 | 0.028459 | 0.027344 | 1.98 × 10 | 5.93 × 10 | 1.08 × 10 |
4.5 | 0.019761 | 0.018205 | 0.017213 | 1.05 × 10 | 3.85 × 10 | 8.36 × 10 |
5 | 0.012541 | 0.011623 | 0.010611 | 1.04 × 10 | 5.77 × 10 | 1.82 × 10 |
5.5 | 0.007884 | 0.007369 | 0.006217 | 5.75 × 10 | 1.59 × 10 | 2.03 × 10 |
6 | 0.004884 | 0.004592 | 0.003229 | 3.82 × 10 | 2.26 × 10 | 1.64 × 10 |
6.5 | 0.002955 | 0.002753 | 0.001159 | 3.63 × 10 | 2.37 × 10 | 1.09 × 10 |
7 | 0.001722 | 0.001514 | −0.00029 | 3.98 × 10 | 2.06 × 10 | 6.23 × 10 |
7.5 | 0.000943 | 0.000665 | −0.00132 | 4.18 × 10 | 1.56 × 10 | 3.15 × 10 |
8 | 0.000459 | 7.33 × 10 | −0.00205 | 3.99 × 10 | 1.06 × 10 | 1.39 × 10 |
Error | Error | Error | ||||
---|---|---|---|---|---|---|
0 | 0.999869 | 0.999942126 | 1.000046539 | 8.48 × 10 | 2.49 × 10 | 1.35 × 10 |
0.5 | 0.657548 | 0.648361105 | 0.652267958 | 1.13 × 10 | 8.64 × 10 | 1.48 × 10 |
1 | 0.432323 | 0.420373492 | 0.425345515 | 2.49 × 10 | 3.49 × 10 | 2.13 × 10 |
1.5 | 0.284134 | 0.272460669 | 0.277227263 | 2.75 × 10 | 2.52 × 10 | 1.77 × 10 |
2 | 0.186657 | 0.176493933 | 0.180648726 | 3.35 × 10 | 2.37 × 10 | 1.26 × 10 |
2.5 | 0.122446 | 0.114370487 | 0.117500726 | 3.41 × 10 | 4.05 × 10 | 1.19 × 10 |
3 | 0.080115 | 0.074177006 | 0.076153604 | 3.80 × 10 | 5.32 × 10 | 7.03 × 10 |
3.5 | 0.052232 | 0.048075896 | 0.049165752 | 1.07 × 10 | 1.42 × 10 | 9.59 × 10 |
4 | 0.033899 | 0.031018745 | 0.031632304 | 1.91 × 10 | 5.93 × 10 | 1.02 × 10 |
4.5 | 0.021866 | 0.019809821 | 0.020281361 | 1.24 × 10 | 3.85 × 10 | 5.37 × 10 |
5 | 0.013974 | 0.0124322 | 0.012941831 | 3.30 × 10 | 5.77 × 10 | 1.54 × 10 |
5.5 | 0.00879 | 0.007598363 | 0.008187146 | 3.09 × 10 | 1.59 × 10 | 7.49 × 10 |
6 | 0.005373 | 0.004468614 | 0.005088242 | 2.66 × 10 | 2.26 × 10 | 2.54 × 10 |
6.5 | 0.003101 | 0.002481237 | 0.00304435 | 8.46 × 10 | 2.37 × 10 | 1.20 × 10 |
7 | 0.001572 | 0.001251771 | 0.001669306 | 1.49 × 10 | 2.06 × 10 | 2.33 × 10 |
7.5 | 0.000522 | 0.000513104 | 0.000716345 | 2.04 × 10 | 1.56 × 10 | 3.32 × 10 |
8 | −0.00022 | 0.0000790103 | 0.0000288704 | 2.45 × 10 | 1.06 × 10 | 4.05 × 10 |
Error | Error | Error | ||||
---|---|---|---|---|---|---|
0 | 1.000207 | 0.999984463 | 1.000160487 | 1.29 × 10 | 2.64 × 10 | 4.29 × 10 |
0.5 | 0.607373 | 0.622932087 | 0.64851126 | 3.48 × 10 | 2.10 × 10 | 4.20 × 10 |
1 | 0.36874 | 0.387983682 | 0.420428542 | 4.99 × 10 | 1.52 × 10 | 1.14 × 10 |
1.5 | 0.223817 | 0.241550879 | 0.272454235 | 1.84 × 10 | 1.71 × 10 | 2.35 × 10 |
2 | 0.135761 | 0.15030047 | 0.176513107 | 3.23 × 10 | 3.85 × 10 | 1.19 × 10 |
2.5 | 0.082288 | 0.093391042 | 0.114374775 | 1.90 × 10 | 1.01 × 10 | 2.76 × 10 |
3 | 0.04976 | 0.057843178 | 0.074069561 | 1.80 × 10 | 7.90 × 10 | 1.09 × 10 |
3.5 | 0.029948 | 0.035616546 | 0.047797612 | 3.69 × 10 | 9.41 × 10 | 2.48 × 10 |
4 | 0.017906 | 0.021730061 | 0.030568072 | 2.21 × 10 | 5.25 × 10 | 2.01 × 10 |
4.5 | 0.010611 | 0.013081778 | 0.019220147 | 3.26 × 10 | 1.44 × 10 | 8.06 × 10 |
5 | 0.006204 | 0.007723781 | 0.01174661 | 1.89 × 10 | 1.47 × 10 | 8.03 × 10 |
5.5 | 0.003546 | 0.004422034 | 0.006857646 | 7.20 × 10 | 7.26 × 10 | 7.79 × 10 |
6 | 0.001943 | 0.002390821 | 0.003711368 | 2.03 × 10 | 9.74 × 10 | 5.39 × 10 |
6.5 | 0.000975 | 0.001132019 | 0.001749424 | 4.13 × 10 | 3.89 × 10 | 1.15 × 10 |
7 | 0.000389 | 0.000335618 | 0.000596071 | 4.60 × 10 | 2.76 × 10 | 1.71 × 10 |
7.5 | 0.0000345 | −0.00018474 | −0.0000047669 | 5.75 × 10 | 3.78 × 10 | 2.12 × 10 |
8 | −0.00018 | −0.00053577 | −0.0002295 | 5.78 × 10 | 2.41 × 10 | 2.35 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Waseem; Khan, M.I.; Awwad, F.A.; Ismail, E.A.A. Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach. Symmetry 2023, 15, 1529. https://doi.org/10.3390/sym15081529
Ullah A, Waseem, Khan MI, Awwad FA, Ismail EAA. Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach. Symmetry. 2023; 15(8):1529. https://doi.org/10.3390/sym15081529
Chicago/Turabian StyleUllah, Asad, Waseem, Muhammad Imran Khan, Fuad A. Awwad, and Emad A. A. Ismail. 2023. "Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach" Symmetry 15, no. 8: 1529. https://doi.org/10.3390/sym15081529
APA StyleUllah, A., Waseem, Khan, M. I., Awwad, F. A., & Ismail, E. A. A. (2023). Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach. Symmetry, 15(8), 1529. https://doi.org/10.3390/sym15081529