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Abstract: Non-holonomic wheeled robots (NWR) comprise a type of robotic system; they use wheels
for movement and offer several advantages over other types. They are efficient, highly, and ma-
neuverable, making them ideal for factory automation, logistics, transportation, and healthcare.
The control of this type of robot is complicated, due to the complexity of modeling, asymmetrical
non-holonomic constraints, and unknown perturbations in various applications. Therefore, in this
study, a novel type-3 (T3) fuzzy logic system (FLS)-based controller is developed for NWRs. T3-FLSs
are employed for modeling, and the modeling errors are considered in stability analysis based on the
symmetric Lyapunov function. An observer is designed to detect the error, and its effect is eliminated
by a developed terminal sliding mode controller (SMC). The designed technique is used to control
a case-study NWR, and the results demonstrate the good accuracy of the developed scheme under
non-holonomic constraints, unknown dynamics, and nonlinear disturbances.

Keywords: type-3 fuzzy logic; fuzzy control; symmetrical non-holonomic constraints; mobile robots;
stability; sliding mode control

1. Introduction

Nowadays, the use of mobile robots in engineering systems is expanding. Therefore,
the modeling and control of these systems have attracted the attention of many researchers.
Non-holonomic wheeled robots (NWR) are physical systems whose state depends on the
path taken to achieve it. Non-holonomic systems cannot be controlled linearly and within
the range of each equilibrium point. Therefore, in recent years, several suitable control
methods for the stability of these systems have been presented. The performance of the
control systems of NWR is greatly reduced under disturbances and restricted constraints
and requires further development and study [1,2].

NWRs are only able to move in the direction of the axis of their moving wheels. These
limitations make these robots unable to move from one point to another through any path
that simply does not have obstacles. On the other hand, the non-linear nature of these
systems also makes their control difficult [3]. The sliding-mode controller (SMC) is a robust
and effective method for controlling non-linear systems in order to deal with uncertainties
and external and internal disturbances and time delays [4]. On the other hand, based on
the SMC approach, all modes of the closed-loop system are directed towards a certain
sliding surface in space [5]. Rojas-Cubides et al. investigated the control of NWRs in
two-dimensional polar coordinates by using the sliding surface tracking control method [6].
In the method presented by Cen and Singh, two controllers for asymptotic stability and
tracking error were checked for position and direction, respectively [7].
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The methods for controlling NWRs are classified into two general categories: kinematic
control and dynamic control. In the last few decades, many studies have been carried
out on the kinematic control of NWRs, and less research has been done on the dynamic
control of these robots. In engineering applications, dynamic robot controllers are more
realistic and valuable than kinematic controllers due to torque input for motors. Therefore,
it is better to study the dynamic control of NWRs. It has been shown that non-holonomic
systems cannot have a stable and rigid shape with limited movement.

Pai presented a kinematic controller using SMC [8]. The SMC could only ensure the
tracking error’s convergence toward zero in a constrained manner and therefore could not
guarantee the convergence to equilibrium point in a finite amount of time. To solve this
problem, the terminal SMC was presented [9]. At first, a model was created to explain
the movement dynamics. Following this, an SMC was developed and its control system
stability was proven using the Lyapunov theorem. Naderolasli et al. designed a terminal
SMC using a high-gain disturbance observer [10]. To account for unmodeled dynamics and
unpredictable parameters, an adaptive-neural method was used. The derivative of virtual
variables was offered as a solution to the problem of differentiation explosion. Tourajizadeh
et al. developed a fast SMC law and suggested a sliding surface disturbance observer to esti-
mate the uncertainty in the system and improve the tracking performance [11]. Disturbance
observers make the system robust and improve dynamic performance. Through the use of
simulations, the effectiveness of the developed robot in avoiding obstacles as well as the
resilience of its related controller in the presence of disturbances are studied. By simulating
the system and contrasting the responses of the suggested SMC and feedback linearization
approach, these simulations are made valid. Therefore, they are widely used in motion
control systems, such as non-holonomic systems and electric charge simulators [12]. Zhai
and Song described a path-tracking using SMC and designed an observer [13]. The error
was split into a two-order and a three-order subsystem in order to carry out the trajectory
tracking task. To stabilize the two-order system in finite time, a fast SMC for angular
velocity was first built. Then, the three-order system’s stability was ensured by another
SMC for linear velocity.

In recent decades, the stabilization of underactive systems has received a lot of at-
tention. The number of control inputs in sub-active systems is less than their degrees of
freedoms, and this issue makes their controlling more complicated than in fully active
systems. An example of a subactive system is a non-holonomic system. In these systems,
internal deformation is considered one of the control factors. On the other hand, based on
Brackett’s theorem, a smooth and time-independent control law cannot stabilize such sys-
tems asymptotically. This theorem has directed researchers’ attention to control laws with
explicit subordination to time, non-derivative laws, or discontinuous laws. In addition, the
geometric perspective has also provided powerful tools for the modeling, analysis, route
design, and control and stability of these systems. Therefore, wheeled robots are a group
of mobile robots that have movement limitations. These types of robots exhibit highly
nonlinear behavior; for this reason, one of the most important topics in the discussion of
NWRs is the discussion of path tracking and stability. In [14], the stability of non-holonomic
systems was studied in chain form, using the predictive control method [15]. The robust
tracking controller based on fuzzy logic for a wheeled kinematic robot with an unknown
slip was studied in [16]. Gharajeh and Jond proposed an adaptive controller for reference
trajectory tracking by NWRs [17]. Simulations were used to assess the usefulness of the
suggested strategy in guiding an NWR through cluttered settings and to show how well it
performs in contrast to existing collision-free navigation techniques. The robot’s behavior
in avoiding obstacles and the length of the path found without colliding were used as the
assessment criterion.

To cope with the uncertainties of robotic systems, some FLS-based controllers have
been developed. For example, Bi suggested an FLS-based regulator for a wall-cleaning
robot to guarantee its operation’s safety and dependability [18]. Since the precise under-
lying dynamics of the vacuum adhesion cannot be analytically represented, an FLS was
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employed to accomplish the control goals. Considering symmetry principles in robotic
systems, the dynamic modeling by FLSs was studied [18]. Cuevas et al. developed an FLS-
based controller for mobile robots using a metaheuristic algorithm [19]. The path-tracking
problem of robots using FLSs was studied in [20], and its optimization was investigated
by the use of various evolutionary algorithms. Chen et al. developed a type-2 FLS as a
controller for class for robotic systems and suggested a genetic algorithm for optimiza-
tion [21]. The study in [22] proposed a nonlinear FLS-based controller as an analytical
design and a straightforward control structure for the trajectory tracking of NWRs. The
analytical FLS-based rule was derived by identifying error dynamics. Luviano-Cruz et
al. studied the multi-agent robotic systems and suggested an FLS-based Q-function for
a reinforcement learning algorithm, which deceased the computational costs and proved
the convergence [23]. The symmetrical annular-shaped NWRs were studied in [24], and a
modeling scheme was developed.

Recently, T3-FLSs have been introduced by Mohammadzadeh et al. for uncertain
complicated systems [25–27]. T3-FLSs are an extension of traditional FLSs that allow for
more complex and uncertain reasoning. Unlike type-1 and type-2 FLSs, which use crisp
values to represent uncertainty bounds, T3-FLSs use fuzzy sets. This allows for a higher
degree of applicability and flexibility in representing uncertainty and reasoning about
complex systems. Therefore, the primary advantage of T3-FLSs is their ability to handle
more complex and uncertain systems. By allowing for more nuanced reasoning about
uncertainty, T3-FLSs can provide more accurate and reliable control of dynamic systems
and robots. Additionally, T3-FLSs can be used to model and control systems with multiple
inputs and outputs, making them suitable for a wide range of applications.

Another basic advantage of T3-FLSs is their ability to learn fast and adapt over time. By
using advanced machine learning techniques to adjust the parameters, T3-FLSs can improve
their performance and accuracy over time. This makes them well-suited for applications
where the system being controlled may change or evolve over time. Overall, T3-FLSs
offer a powerful and flexible tool for modeling and controlling complex and uncertain
systems [25,27,28]. However, the application of T3-FLSs in robotic control systems has been
rarely investigated. For example, in [26], a T3-FLS was used in control of robotic arms, and
the T3-FLS showed a good efficiency and accuracy in the modeling of robotic arms. In [25],
a general effective scheme was provided to implement T3-FLS-based controllers for robotic
systems and other similar online control problems.

Therefore, in this study we propose a new control strategy on the basis of T3-FLSs.
The NWR dynamics are modeled using T3-FLSs with a simple learning strategy, and the
estimation error is observed and eliminated by the developed SMC. The main contributions
are highlighted as follows:

• A novel approach based on T3-FLSs is introduced to deal with non-holonomic con-
straints, unknown dynamics, and nonlinear disturbances.

• An observer is designed to detect the error, and its effect is eliminated by a developed
terminal sliding mode controller (SMC).

• The modeling errors are considered in stability analysis based on the symmetric
Lyapunov function.

• A simple training rule is developed for T3-FLSs.

The remainder of the paper is organized as follows. In Section 2, the dynamics of the case-
study system are described. In Section 3, the T3-FLS is illustrated. The controller is designed
in Section 4. The simulations and conclusions are provided in Sections 5 and 6, respectively.

2. Problem Formulation

To specify the position of robot, the relationship between the global coordinates and
the local coordinates of the robot must be understood. The axis XI , YI is the coordinates
in the general reference, indicated by O : {XI , YI}, as shown in Figure 1. The point P on
the robot body is selected in local coordinates to determine the position. Relative to this
point, the coordinates {XR, YR} are obtained as local coordinates, where the point P is its
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origin. The position of a point P in the general coordinates is defined by x and y, and the
angle between the axes of general and local coordinates is defined by θ. We represent the
position by a vector as:

ξ I =

 x
y
θ

 (1)

To describe the motion of the robot, we need to convert the motion in global coordinates
to the motion along the local axes of the robot. It should be noted that this transformation
is a function of the current position. Thus,

R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (2)

R(θ) is used in the motion map in the general reference coordinates {XI , YI} and in
the local reference frame with coordinates {XR , YR}.

Figure 1. Position of robot.

In the robotics community, the concept of holonomy is used when describing the
movement space of moving robots. Such a term can be generalized to many mathematical
cases, including differential relations, functions, and limits. An omnidirectional robot that
can move in all directions x, y, θ and at any time is holonomic. In mobile robots, this term
refers to the kinetic limitation of its chassis [29,30].

In classical mechanics, a system is called holonomic if all the constraints of that system
are holonomic. To be a holonomic adverb, it must be functionally expressed as:

f (x1, x2, . . .xn, t) = 0 (3)

These restrictions are only dependent on time and coordinates. Constraints that cannot
be expressed as a function above are called non-holonomic constraints.

NWRs are nonlinear systems that usually have certain restrictions on their movement.
Therefore, the theory of nonlinear control plays a key role in this. Like any system, the goal
of controlling wheeled robots is to achieve the desired performance according to the user’s
taste. Basically, this desirable performance is influenced by the practical conditions of the
system. Motion planning and control for wheeled robots are more than two decades old.
Apart from the desired control goal for the NWRs, the results in this field can be categorized.
Perhaps the most important and major of these categories is based on the coordinates of the
mathematical model, for which the design is done [31,32]. The mathematical model of many
mechanical systems, including most wheeled robots, is transformed into a standard form by
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a transformation from its original coordinates to other coordinates. These transformations
are usually in the form of a variable change in states along with feedback in system inputs.
In this way, instead of designing the path and control for a specific robotic system, the
transformation of the design problem can be solved for the standard form [33,34]. The main
advantage of designing for a standard form is that if we can solve the design problem for
that form, we have solved the problem at least locally for all systems that can be converted
to that form. Another great advantage of this work is that, compared to the original
nonlinear system, the standard forms are more prone to having principled methods to
solve problems such as point stabilization. In addition, it is usually easier to reach solutions
that include a certain type of optimization in the transformed coordinates than in the
original coordinates. Of course, solving the problem for standard forms is also difficult.
The most obvious difficulty is the unclear relationship between the features of the solution
in the transformed coordinates and the features of the solution in the original coordinates.
Additionally, it may be very difficult to find a conversion that takes the original system into
standard form. Chain systems are a popular standard form that is locally equivalent to
many mechanical systems, including wheeled robots [35,36].

Definition 1. The constraint A(q)q̇ = 0, where A(q) ∈ Rk×n, and k denotes an independent rate
constraint, is called a Faffin restriction. A Fafini constraint is integrable if

A(q)q̇ = 0⇔ ∂h
∂q

q̇ = 0 (4)

Definition 2. If a Faffin restriction is integrable, then it is a holonomic restriction; otherwise, it is
a non-holonomic restriction.

Non-holonomic systems cannot be controlled linearly and within the range of their
equilibrium point due to the presence of constraints, so we use FLS-based SMC for the
stability of this class of systems. Under disturbances, the performance of the control
system is greatly reduced. To compensate for the disturbance effect, we use the disturbance
observer. The disturbance observer makes the system resistant and improves dynamic
performance. The suggested scheme is illustrated in Figure 2.

Figure 2. The control diagram.

3. Type-3 Fuzzy Estimator

The nonlinear functions are estimated by T3-FLS, as shown in Figure 3. T3-FLSs show
better performance in the face of nonlinear problems [37].
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Figure 3. The T3-FLS structure.

In this section, the structure is explained, and rules are optimized.

(1) The inputs are considered as x1, x2, x3.
(2) Compute the memberships. In T3-FLSs, we need to compute the upper/lower mem-

berships for the left and right side of fuzzy sets. Consider Ξ̃j
i as jth FS for xi; then, we

have [38] (see Figure 4):

Z̄
Ξ̃j

i |σ̄i

=



1−


∣∣∣∣∣xi−C

Ξ̃
j
i

∣∣∣∣∣
ς

Ξ̃
j
i


σ̄i

if C
Ξ̃j

i
− ς

Ξ̃j
i
< xi ≤ C

Ξ̃j
i

1−


∣∣∣∣∣xi−C

Ξ̃
j
i

∣∣∣∣∣
ς̄

Ξ̃
j
i


σ̄i

if C
Ξ̃j

i
< xi ≤ C

Ξ̃j
i
+ ς̄

Ξ̃j
i

0 if xi > C
Ξ̃j

i
+ ς̄

Ξ̃j
i

or xi ≤ C
Ξ̃j

i
− ς

Ξ̃j
i

(5)

Z̄
Ξ̃j

i |σi

=



1−


∣∣∣∣∣xi−C

Ξ̃
j
i

∣∣∣∣∣
ς

Ξ̃
j
i


σi

if C
Ξ̃j

i
− ς

Ξ̃j
i
< xi ≤ C

Ξ̃j
i

1−


∣∣∣∣∣xi−C

Ξ̃
j
i

∣∣∣∣∣
ς̄

Ξ̃
j
i


σi

if C
Ξ̃j

i
< xi ≤ C

Ξ̃j
i
+ ς̄

Ξ̃j
i

0 if xi > C
Ξ̃j

i
+ ς̄

Ξ̃j
i

or xi ≤ C
Ξ̃j

i
− ς

Ξ̃j
i

(6)

Z
Ξ̃j

i |σ̄i

=



1−


∣∣∣∣∣xi−C

Ξ̃
j
i

∣∣∣∣∣
ς

Ξ̃
j
i


1
σ̄i

if C
Ξ̃j

i
− ς

Ξ̃j
i
< xi ≤ C

Ξ̃j
i

1−


∣∣∣∣∣xi−C

Ξ̃
j
i

∣∣∣∣∣
ς̄

Ξ̃
j
i


1
σ̄i

if C
Ξ̃j

i
< xi ≤ C

Ξ̃j
i
+ ς̄

Ξ̃j
i

0 if xi > C
Ξ̃j

i
+ ς̄

Ξ̃j
i

or xi ≤ C
Ξ̃j

i
− ς

Ξ̃j
i

(7)
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Z
Ξ̃j

i |σi

=



1−


∣∣∣∣∣xi−C

Ξ̃
j
i

∣∣∣∣∣
ς

Ξ̃
j
i


1
σi

if C
Ξ̃j

i
− ς

Ξ̃j
i
< xi ≤ C

Ξ̃j
i

1−


∣∣∣∣∣xi−C

Ξ̃
j
i

∣∣∣∣∣
ς̄

Ξ̃
j
i


1
σi

if C
Ξ̃j

i
< xi ≤ C

Ξ̃j
i
+ ς̄

Ξ̃j
i

0 if xi > C
Ξ̃j

i
+ ς̄

Ξ̃j
i

or r xi ≤ C
Ξ̃j

i
− ς

Ξ̃j
i

(8)

where Z̄
Ξ̃j

i |σ̄i

/Z̄
Ξ̃j

i |σi

, and Z
Ξ̃j

i |σ̄i

/Z
Ξ̃j

i |σi

denote the upper/lower. Additionally, C
Ξ̃j

i

represents the center of Ξ̃j
i , and ς

Ξ̃j
i

and ς̄
Ξ̃j

i
show the distances between C

Ξ̃j
i

and the

left/right points of Ξ̃j
i (see Figure 4).

Figure 4. Type-3 fuzzy set.

(3) By considering the upper/lower memberships, the corresponding firing degree of
rules are written as:

β̄l
σ̄i
= Z̄Ξ̃

p1
1 | σ̄i

· Z̄Ξ̃
p2
1 | σ̄i

· · · Z̄Ξ̃pn
1 | σ̄i

(9)

β̄l
σi
= Z̄Ξ̃

p1
1 | σi

· Z̄Ξ̃
p2
1 | σi

· · · Z̄Ξ̃pn
1 | σi

(10)

βl
σ̄i
= ZΞ̃

p1
1 | σ̄i

· ZΞ̃
p2
1 | σ̄i

· · · ZΞ̃pn
1 | σ̄i

(11)

βl
σi
= ZΞ̃

p1
1 | σi

· ZΞ̃
p2
1 | σi

· · · ZΞ̃pn
1 | σi

(12)

where form of l-th rule is given as:

If x1 is Ξ̃p1
1 and x2 is Ξ̃p2

2 and · · · xn is Ξ̃pn
n

Then f ∈
[
ϑl , ϑ̄l

]
, l = 1, . . ., M

(13)

where ϑl ∈
[
ϑl,σ, ϑl,σ̄

]
, ϑ̄l ∈

[
ϑ̄l,σ, ϑ̄l,σ̄

]
, Ξ̃

pj
i denotes the FS for xi, and ϑl and ϑ̄l

represent the rule parameters.
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(4) Considering the simple type-reduction, the output is given as:

f =

nσ

∑
i=1

(
σi`i + σ̄i ¯̀ i

)
nσ

∑
i=1

(σi + σ̄i)
(14)

where

¯̀ i =

nr
∑

l=1

(
β̄l

σ̄i
ϑ̄l,σ̄i

+ βl
σ̄i

ϑl,σ̄i

)
nr
∑

l=1

(
β̄l

σ̄i
+ βl

σ̄i

) (15)

`i =

nr
∑

l=1

(
β̄l

σi
ϑ̄l,σi

+ βl
σi

ϑl,σi

)
nr
∑

l=1

(
β̄l

σi
+ βl

σi

) (16)

The output f (X, ϑ) is rewritten as:

f (X, ϑ) = ϑTΩ (17)

where

ΩT =
[
Ω1,σi

, . . ., Ωnr ,σi
, Ω1,σ̄i

, . . ., Ωnr ,σ̄i
, Ω̄1,σi

, . . ., Ω̄nr ,σi , Ω̄1,σ̄i , . . ., Ω̄nr ,σ̄i

]
(18)

ϑT =
[
ϑ1,σi

, . . ., ϑnr ,σi
, ϑ1,σ̄i

, . . ., ϑnr ,σ̄i
, ϑ̄1,σi

, . . ., ϑ̄nr ,σi , ϑ̄1,σ̄i , . . ., ϑ̄nr ,σ̄i

]
(19)

Ωl,σi
=

nσ

∑
i=1

σiβ
l
σi

nσ

∑
i=1

(σi + σ̄i)
nr
∑

l=1

(
β̄l

σi
+ βl

σi

) (20)

Ω̄l,σi
=

nσ

∑
i=1

σi β̄
l
σi

nσ

∑
i=1

(σi + σ̄i)
nr
∑

l=1

(
β̄l

σi
+ βl

σi

) (21)

Ωl,σ̄ =

nσ

∑
i=1

σ̄iβ
l
σ̄

nσ

∑
i=1

(σi + σ̄i)
nr
∑

l=1

(
β̄l

σ̄ + βl
σ̄

) (22)

Ω̄l,σ̄ =

nσ

∑
i=1

σ̄i β̄
l
σ̄

nσ

∑
i=1

(σi + σ̄i)
nr
∑

l=1

(
β̄l

σ̄ + βl
σ̄

) (23)

The rules are updated as:

ϑ(t) = ϑ(t− 1) + εΩ(y− ŷ) (24)
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4. Controller

We describe the third-order non-holonomic system in chain form as follows:

ẋ1 = u1
ẋ2 = u2
ẋ3 = f (x) + x2u1 + n

(25)

where x = [x1, x2, x3]
T , and u1 and u2 are controllers. f̂ (ϑ, x) is a nonlinear function, and

n denotes the disturbance. The dynamics of robot are written as:

ẋ1 = u1
ẋ2 = u2
ẋ3 = f̂ (ϑ|x) + x2u1 + ϕ

(26)

where f̂ (ϑ|x) denotes the T3-FLS and ϕ represents the estimation error. If the desired path
is xϕ = [x1d, x2d, x3ϕ]

T , then we can write:

ẋ1d = u1d

ẋ2d = u2d (27)

ẋ3ϕ = f (xϕ) + x2du1d

where u1d and u2d are the desired controllers. Consider the tracking error as xe = x− xϕ,
then we can write:

ẋ1e = u1 − u1d

ẋ2e = u2 − u2d (28)

ẋ3e = (−u1d + u1)(x2d + x2e) + u1dx2e + f (x)− f (xϕ) + ϕ

Rewrite the system dynamics as:

u̇1 = v1u̇2 = v2 (29)

From (28) and (29), we can write:

ẋ1e = u1 − u1d
u̇1 = v1

(30)

The controller v1 is considered as follows:

v1 = u̇1d − 2x1e
−0.4(−u1d + u1)− 4(5x1e

0.6 − u1d + u1)
0.6 (31)

This controller guarantee that −u1d + u1 and x1e are approached to zero. From (28)
and (29), consider the second subsystem:

ẋ2e = u2 − u2d
ẋ3e = x2eu1d + f (x)− f (xϕ) + ϕ
u̇2 = v2

(32)

The sliding surface s as:
s = η − x3 (33)

η̇ is written as:

η̇ = −ks− µ tanh (s)− ε sa0/b0 − | f (x)| tanh (s) + x2u1 (34)
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The parameters a0 and b0 are positive constant, and a0 < b0. The other parameters
k, µ, and ε are also positive constant, and µ ≥ |ϕ|. The disturbance estimation error ϕ̂ is
written as:

ϕ̂ = −ks− ε sa0/b0 − µ tanh (s)− f (x)− | f (x) | tanh (s) (35)

In the following, it is proved that ϕ̂ approaches zero. By taking derivative from (33),
we can write:

ṡ = η̇ − ẋ3 = −ks− µ tanh (s)− ε sa0/b0 − | f (x)| tanh(s)− f (x)− ϕ (36)

Consider the Lyapunov function V(s) as:

V(s) =
1
2

s2 (37)

Derivative of (37), and substituting from (36) yields:

V̇(s) = sṡ (38)

= s
(
−ks− ε sa0/b0 − µ tanh(s)− f (x)− | f (x)|tanh (s)− ϕ

)
≤ −ks2 − ε s(a0+b0)/b0 − µ|s| − s f (x) + |s||ϕ| − | f (x)||s|
≤ −ks2 − ε s(a0+b0)/b0 (39)

≤ −2kV(s)− 2(a0+b0)/2b0 εV(s)(a0+b0)/2b0

Then, it is concluded from the terminal SMC theorem that s is converged to zero. The
estimation error ϕ̃ is written as:

ϕ̃ = ϕ̂− ϕ

= −ks− µ tanh(s)− εsa0/b0 − | f (x)| tanh(s)− f (x)− ϕ

= −ks− µ tanh(s)− εsa0/b0 − | f (x)| tanh(s)− f (x)− ẋ3 + f (x) + x2u
= −ks− µ tanh(s)− εsa0/b0 − | f (x)| tanh(s)− ẋ3 + x2u
= η̇ − ẋ3 = ṡ

(40)

Considering the convergence of s, the convergence of ϕ̃ is proved. To design the
controller, the recursive surface is designed as:

ψ1 = x2e + x3e

ψ2 = ψ̇1 + ρ1ψa1/b1
1

ψ3 = ψ̇2 + ρ2ψa2/b2
2 + s

(41)

where ρ1 and ρ2 are positive and a1, a2, b1, b2 are positive integers. For ψ2 and ψ3, we can
write:

ψ̇2 = ψ̈1 + ρ1
ϕ
dt

(
ψ1

a1/b1
)

ψ̇3 = ψ̈2 + ρ2
ϕ
dt

(
ψ2

a2/b2
)
+ ṡ

(42)

The jth-order derivative of ψ2 and ψ3 are written as:

ψ2
(j) = ψ1

(j+1) + ρ1
ϕ(j)

ϕt(j)

(
ψ1

a1/b1
)

ψ3
(j) = ψ2

(j+1) + ρ2
ϕ(j)

ϕt(j)

(
ψ2

a2/b2
)
+ s(j)

(43)

Then, from Equations (28), (29), and (41) we can write:

ψ
(3)
1 = v̇2 − ü2d + ẍ2eu1d + 2ẋ2eu̇1d + x2eü1d + f̈ (x)− f̈ (xϕ) + ϕ̈ (44)
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From (41), Equation (44) can be written as:

ψ̇3 = ψ
(3)
1 +

2
∑

j=1
ρj

ϕ(3−j)

ϕt(3−j)

(
ψj

aj/bj
)
+ ṡ

= v̇2 − ü2d + ẍ2eu1d + 2ẋ2eu̇1d + x2eü1d

+ f̈ (x)− f̈ (xϕ) + ϕ̈ +
2
∑

j=1
ρj

ϕ(3−j)

ϕt(3−j)

(
ψj

aj/bj
)
+ ṡ

(45)

The controller is given as:

v̇2 = ü2d − ẍ2eu1d − 2ẋ2eu̇1d − x2eü1d

− f̈ (x) + f̈ (xϕ) + s(3) − ¨̂ϕ (46)

−
2

∑
j=1

ρj
ϕ(3−j)

ϕt(3−j)

(
ψj

aj/bj
)
− ṡ− δψ3 − ζψ3

a3/b3

where δ > 0 and ζ > 0. By the controller (46), ψ1, ψ2, and ψ3 are converged to zero. To
prove this, from substituting (46) into (45), we write:

ψ̇3 = −δ ψ3 − ζ ψ3
a3/b3 (47)

Now, consider the following Lyapunov:

V(ψi) =
1
2

ψi
Tψi (48)

det V(ψ3) becomes:

V̇(ψ3) = ψ3
Tψ̇3

= −ψ3
T
(

δ ψ3 + ζ ψ3
a3/b3

)
(49)

≤ −2δV(ψ3)− 2η3 ζV(ψ3)
η3

where η3 = a3+b3
2b3

. Then, ψ3 = 0 is converged to zero. From (41), we can write:

ψ̇2 = −ρ2ψ2
a2/b2 − s (50)

Similarly from the theorem of terminal SMC, we can conclude that ψ2 also reached
zero. Then, from (41), we can obtain:

ψ̇1 = −ρ1ψ1
a1/b1 (51)

Then, by taking derivative from (51) along with the path ψ1 and ψ2, we have:

V̇1 = ψ1
Tψ̇1 ≤ −ρ1||ψ1||

a1
b1
+1

V̇2 = ψ2
Tψ̇2 ≤ −ρ2||ψ2||

a2
b2
+1

(52)

Therefore, it is concluded that all surfaces are converged to zero.
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5. Simulation

In this section, the results of simulations are provided. The dynamic of case study
robot is written as:

ẋ1 = u1

ẋ2 = u2 (53)

ẋ3 = −x1 + 3x2
(
1− x2

1
)
+ u1x2 + cos

(
0.2πt

)
+ 2 cos

(
0.4
√

t + 1
)

where f = −x1 + 3x2
(
1− x2

1
)
+ u1x2 and ϕ = cos(0.2πt)+ 2 cos

(
0.4
√

t + 1
)
. The reference

trajectory is considered as:
ẋ1d = u1d
ẋ2d = u2d
ẋ3ϕ = f

(
xϕ

)
+ x2du1 ϕ

(54)

where f (xϕ) = −x1d + 3x2d(1− x2
1d). The dynamics of xie = xi − xid (i = 1, 2, 3) are

written as:

ẋ1e = u1 − u1d

ẋ2e = u2 − u2d (55)

ẋ3e = (−u1d + u1)x2 + x2eu1d + ϕ− f (xϕ) + f (x)

The parameters considered are given in Table 1. As mentioned earlier, the controller
accuracy does not depend on the system dynamics and parameters. However, there are
some free parameters in the suggested control system that have light restrictions on their
values. The values of these parameters are given in Table 1.

Table 1. Control conditions.

Parameter Value

k 10
b2 7
b1 9
a1 5
b0 5
a0 3
ε 3
µ 2
δ 5
ρ2 2
ρ1 3
ζ 1.5

The initialization is considered as u1(0) = 3, u2(0) = −2 and η(0) = 0.6. The inputs
for reference system are:

u2d = 1− e−4t

u1d = 1− e−2t (56)

The performances are illustrated in Figure 5. The tracking errors for x1, x2, and x3
are also illustrated in Figure 6, showing that the error approaches zero in a short time.
The errors do not have sudden spikes or drops, indicating good stability in the tracking
system. The errors steadily decrease until they reach an acceptable level of accuracy. The
trajectories also show that the tracking system is able to quickly adapt to changes in the
environment, such as perturbation by external disturbances. This means the tracking errors
quickly adjust to maintain accuracy in the presence of uncertainties and perturbations.

The key to a successful implementation of SMC is the design of good control signals
that can drive the system’s state onto the sliding surface and maintain stability on the



Symmetry 2023, 15, 1354 13 of 18

surface. The sliding surface is a virtual boundary that separates the system’s behavior into
two distinct regions: one where the system’s behavior is stable, and the other where the
system’s behavior is unstable. The goal of SMC is to keep the system’s behavior on the stable
region of the sliding surface. The signals of controllers, shown in Figure 7, demonstrate
a rapid convergence to the sliding surface, stability on the surface, and robustness to
disturbances and uncertainties. The trajectory of the control signal reflects these goals, with
rapid adjustments to drive the system onto the surface and small adjustments to maintain
stability once on the surface. These signals also show the small overshoots and oscillations
during the transition to the sliding surface.

The sliding surfaces are shown in Figure 8. The trajectory of the sliding surfaces shows
a rapid convergence to the desired surface, with minimal oscillations or overshoot. Once
on the sliding surface, the trajectory remains relatively flat and stable, with small adjust-
ments as necessary to maintain stability. The sliding surface is also robust to disturbances,
uncertainties, and T3-FLS estimation errors, meaning that it is able to maintain stability
even if there are variations in the system dynamics.

To better show the effectiveness of the suggested controller, the root-mean-square of
tracking error (RMSE) is compared with some other related controllers, such as predictive
controller [39], type-3 fuzzy controller (T3-FLC) [40], and SMC [7]. The results are shown
in Table 2. We see that the RMSE of all errors x1e, x2e, and x3e for the introduced controller
is less than other closely related controllers. The suggested controller has the ability to
observe the estimation errors and disturbances to eliminate their effect on accuracy. It
should be noted that with newly developed programmable devices, the computational cost
for various controllers is almost the same. As seen from Table 2, the execution times for
different controllers are too close.

Figure 5. Trajectories of x1 and x1d (top panel), x2 and x2d (middle panel), and x3 and x3d (bottom
panel).
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Figure 6. Tracking errors for x1 (top panel), x2 (middle panel), and x3 (bottom panel).

Figure 7. Controllers u1 (top panel) and u2 (bottom panel).
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Figure 8. Sliding surfaces s, ψ1, ψ2, and ψ3.

Table 2. Comparisons with other controllers.

Tracking Errors
Execution Time (s)

x1e x2e x3e

Predictive controller [39] 1.0154 0.2307 0.5674 0.1201
T3-FLC [40] 0.6974 0.1570 0.7954 0.1221

SMC [7] 0.8064 0.3145 0.7874 0.1101
Proposed controller 0.5014 0.0871 0.4871 0.1220

The suggested controller does not depend on the robot dynamics and parameters.
The dynamics are estimated, and the estimation error is also considered in stability. There
are a few free parameters in the controller that have a small effect on performance. These
parameters are determined by trial and error. However, in future studies, the controller
parameters can be optimized. To decrease the computational cost, the suggested approach
can be combined with some new control systems such as event-triggered controllers [41],
optimal controllers [42,43], new modeling [44], and fault-tolerant systems [45].
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6. Conclusions

In this paper, the control of non-holonomic robots was studied. A new T3-FLS-based
controller was presented. All of the dynamics of the robot were modeled by a proposed
T3-FLS. Thus, the controller did not depend on the model of the robot. The estimation
error of T3-FLS in modeling was considered in stability analysis. A new observer-based
SMC was designed to eliminate the effect of modeling errors and other perturbations. The
control was applied to the robot, and the results showed that the tracking system of NWR
had good stability and was able to quickly adapt to changes in the environment. The
control signals demonstrated rapid convergence, stability, and robustness to disturbances
and uncertainties. The obtained trajectory of the sliding surfaces also showed a rapid
convergence to the desired surface with minimal oscillations or overshoot and was robust
to disturbances and uncertainties. One of the disadvantages of the controller is that the
speed of tracking is not considered in the control scheme. Additionally, the rule forms of
T3-FLS are constant and are not optimized. Therefore, for future studies, the advanced fast
controllers can be developed using suggested ideas in this paper.
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