Refinements of the Euclidean Operator Radius and Davis–Wielandt Radius-Type Inequalities
Abstract
:1. Introduction
2. Lemmas
3. Applications to Numerical Radius Inequalities
4. The Davis–Wielandt Radius-Type Inequalities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Popescu, G. Unitary invariants in multivariable operator theory. Mem. Am. Math. Soc. 2009, 200, 941. [Google Scholar] [CrossRef]
- Sheikhhosseini, A.; Moslehian, M.S.; Shebrawi, K. Inequalities for generalized Euclidean operator radius via Young’s inequality. J. Math. Anal. Appl. 2017, 445, 1516–1529. [Google Scholar] [CrossRef]
- Bajmaeh, A.B.; Omidvar, M.E. Some Inequalities for the numerical radius and Rhombic numerical radius. Kragujev. J. Math. 2018, 42, 569–577. [Google Scholar]
- Alomari, M.W.; Shebrawi, K.; Chesneau, C. Some generalized Euclidean operator radius inequalities. Axioms 2022, 11, 285. [Google Scholar] [CrossRef]
- Moslehian, M.S.; Sattari, M.; Shebrawi, K. Extension of Euclidean operator radius inequalities. Math. Scand. 2017, 120, 129–144. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces. Linear Algebra Appl. 2006, 419, 256–264. [Google Scholar] [CrossRef]
- Kittaneh, F. Numerical radius inequalities for Hilbert space operators. Studia Math. 2005, 168, 73–80. [Google Scholar] [CrossRef]
- Dragomir, S.S. Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 2009, 5, 269–278. [Google Scholar]
- Sattari, M.; Moslehian, M.S.; Yamazaki, T. Some generalized numerical radius inequalities for Hilbert space operators. Linear Algebra Appl. 2015, 470, 216–227. [Google Scholar] [CrossRef]
- Altwaijry, N.; Feki, K.; Minculete, N. On some generalizations of Cauchy–Schwarz inequalities and their applications. Symmetry 2023, 15, 304. [Google Scholar] [CrossRef]
- Altwaijry, N.; Feki, K. Minculete, Further inequalities for the weighted numerical radius of operators. Mathematics 2022, 10, 3576. [Google Scholar] [CrossRef]
- Bhunia, P.; Bhanja, A.; Bag, S.; Paul, K. Bounds for the Davis–Wielandt radius of bounded linear operators. Ann. Funct. Anal. 2021, 12, 18. [Google Scholar] [CrossRef]
- Bhunia, P.; Sain, D.; Paul, K. On the Davis–Wielandt shell of an operator and the Davis–Wielandt index of a normed linear space. arXiv 2020, arXiv:2006.1532. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Some improvements of numerical radius inequalities of operators and operator matrices. Linear Multilinear Algebra 2020. [Google Scholar] [CrossRef]
- Feki, K.; Mahmoud, S.A.O.A. Davis–Wielandt shells of semi-Hilbertian space operators and its applications. Banach J. Math. Anal. 2020, 14, 1281–1304. [Google Scholar] [CrossRef]
- Hajmohamadi, M.; Lashkaripour, R.; Bakherad, M. Some generalizations of numerical radius on off-diagonal part of 2×2 operator matrices. J. Math. Inequalities 2018, 12, 447–457. [Google Scholar] [CrossRef]
- Hajmohamadi, M.; Lashkaripour, R.; Bakherad, M. Further refinements of generalized numerical radius inequalities for Hilbert space operators. Georgian Math. J. 2021, 28, 83–92. [Google Scholar] [CrossRef]
- Moghaddam, S.F.; Mirmostafaee, A.K.; Janfada, M. Some Sharp Estimations for Davis–Wielandt Radius in B(H). Mediterr. J. Math. 2022, 19, 283. [Google Scholar] [CrossRef]
- Alomari, M.W. On the Davis–Wielandt radius inequalities of Hilbert space operators. Linear Multilinear Algebra 2022, 1–25. [Google Scholar] [CrossRef]
- Kittaneh, F. A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003, 158, 11–17. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pečarić, J.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Furuta, T.; Mićić, J.; Pečarić, J.; Seo, Y. Mond–Pečarić Method in Operator Inequalities, 1st ed.; Ele-Math, Publishing House Element: Zagreb, Croatia, 2005. [Google Scholar]
- Kato, T. Notes on some inequalities for linear operators. Math. Ann. 1952, 125, 208–212. [Google Scholar] [CrossRef]
- Alomari, M.W. On Cauchy–Schwarz type inequalities and applications to numerical radius inequalities. Ricerche Mat. 2022, 1–18. [Google Scholar] [CrossRef]
- Zamani, A.; Shebrawi, K. Some upper bounds for the Davis–Wielandt radius of Hilbert space operators. Mediterr. J. Math. 2020, 17, 25. [Google Scholar] [CrossRef]
- Aujla, J.; Silva, F. Weak majorization inequalities and convex functions. Linear Algebra Appl. 2003, 369, 217–233. [Google Scholar] [CrossRef]
- Kittaneh, F.; Moradi, H.R. Cauchy–Schwarz type inequalities and applications to numerical radius inequalities. Math. Ineq. Appl. 2020, 23, 1117–1125. [Google Scholar] [CrossRef]
- Davis, C. The shell of a Hilbert-space operator. Acta Sci. Math. 1968, 29, 69–86. [Google Scholar]
- Davis, C. The shell of a Hilbert-space operator. II. Acta Sci. Math. 1970, 31, 301–318. [Google Scholar]
- Wielandt, H. On eigenvalues of sums of normal matrices. Pacific J. Math. 1955, 5, 633–638. [Google Scholar] [CrossRef]
- Al-Zoubi, H.; Abdel-Fattah, F.; Al-Sabbagh, M. Surfaces of finite III-type in the Eculidean 3-space. WSEAS Trans. Math. 2021, 20, 729–735. [Google Scholar]
- Alomari, M.W. Numerical radius inequalities for Hilbert space operators. Complex Anal. Oper. Theory 2021, 15, 1–19. [Google Scholar] [CrossRef]
- Hatamleh, R. On the form of correlation function for a class of nonstationary field with a zero spectrum. Rocky Mt. J. Math. 2003, 33, 159–173. [Google Scholar] [CrossRef]
- Hatamleh, R.; Zolotarev, V.A. Triangular Models of Commutative Systems of Linear Operators Close to Unitary Ones. Ukr. Math. J. 2016, 68, 791–811. [Google Scholar] [CrossRef]
- Li, C.K.; Poon, Y.T. Davis–Wielandt shells of normal operators. Acta Sci. Math. 2009, 75, 289–297. [Google Scholar]
- Li, C.K.; Poon, Y.T. Spectrum, numerical range and Davis–Wielandt shells of normal operator. Glasgow Math. J. 2009, 51, 91–100. [Google Scholar] [CrossRef]
- Li, C.K.; Poon, Y.T.; Sze, N.S. Davis–Wielandt, Shells of operators. Oper. Matrices 2008, 2, 341–355. [Google Scholar] [CrossRef]
- Li, C.K.; Poon, Y.T.; Sze, N.S. Elliptical range theorems for generalized numerical ranges of quadratic operators. Rocky Mountain J. Math. 2011, 41, 813–832. [Google Scholar] [CrossRef]
- Li, C.K.; Poon, Y.T.; Tominaga, M. Spectra, norms and numerical ranges of generalized. Linear Multilinear Algebra 2011, 59, 1077–1104. [Google Scholar] [CrossRef]
- Lins, B.; Spitkovsky, I.M.; Zhong, S. The normalized numerical range and the Davis–Wielandt shell. Linear Algebra Its Appl. 2018, 546, 187–209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamadneh, T.; Alomari, M.W.; Al-Shbeil, I.; Alaqad, H.; Hatamleh, R.; Heilat, A.S.; Al-Husban, A. Refinements of the Euclidean Operator Radius and Davis–Wielandt Radius-Type Inequalities. Symmetry 2023, 15, 1061. https://doi.org/10.3390/sym15051061
Hamadneh T, Alomari MW, Al-Shbeil I, Alaqad H, Hatamleh R, Heilat AS, Al-Husban A. Refinements of the Euclidean Operator Radius and Davis–Wielandt Radius-Type Inequalities. Symmetry. 2023; 15(5):1061. https://doi.org/10.3390/sym15051061
Chicago/Turabian StyleHamadneh, Tareq, Mohammad W. Alomari, Isra Al-Shbeil, Hala Alaqad, Raed Hatamleh, Ahmed Salem Heilat, and Abdallah Al-Husban. 2023. "Refinements of the Euclidean Operator Radius and Davis–Wielandt Radius-Type Inequalities" Symmetry 15, no. 5: 1061. https://doi.org/10.3390/sym15051061
APA StyleHamadneh, T., Alomari, M. W., Al-Shbeil, I., Alaqad, H., Hatamleh, R., Heilat, A. S., & Al-Husban, A. (2023). Refinements of the Euclidean Operator Radius and Davis–Wielandt Radius-Type Inequalities. Symmetry, 15(5), 1061. https://doi.org/10.3390/sym15051061