Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function
Abstract
1. Introduction
2. Preliminaries
3. The Class
4. Estimates of the Family
5. Corollaries and Consequences
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bain, L.; Engelhardt, M. Introduction to Probability and Mathematical Statistics; Duxburry Press: Belmont, CA, USA, 1992. [Google Scholar]
- Legendre, A. Recherches sur la Attraction des Sphéroides Homogénes; Mémoires Présentes par Divers Savants a la Académie des Sciences de la Institut de France: France, Paris, 1785; pp. 411–434. [Google Scholar]
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comput. Appl. Math. 2003, 2, 273–282. [Google Scholar] [CrossRef]
- Askey, R.; Ismail, M.E.H. A Generalization of Ultraspherical Polynomials, Studies of Pure Mathematics; Birkhauser: Boston, MA, USA, 1983. [Google Scholar]
- Sakar, F.M.; Hussain, S.; Ahmed, I. Application of Gegenbauer polynomials for bi-univalent functions defined by subordination. Turk. J. Math. 2022, 46, 1089–1098. [Google Scholar] [CrossRef]
- Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 2021, 2, 625–632. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second Order Differential Inequalities in the Complex Plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations and Univalent Functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 1, 71–82. [Google Scholar] [CrossRef]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Ul Haq, A. An application of binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 1, 11–17. [Google Scholar]
- Charalambides, C.A.; Papadatos, N. The q-factorial moments of discrete q-distribution and a characterization of the Euler distribution. In Advances on Models, Characterizations and Applications; Chapman and Hall: London, UK, 2005; pp. 57–71. [Google Scholar]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Shammaky, A.E.; Frasin, B.A.; Seoudy, T.M. Subclass of Analytic Functions Related with Pascal Distribution Series. J. Math. 2022, 2022, 8355285. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Park, C.; Lee, J.R. Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Math. 2022, 7, 11772–11783. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Alb Lupaş, A. A class of Janowski-type (p, q)-convex harmonic functions involving a generalized q-Mittag-Leffler function. Axioms 2023, 12, 190. [Google Scholar] [CrossRef]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy Differential Subordinations Based upon the Mittag-Leffler Type Borel Distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 3, 338–350. [Google Scholar] [CrossRef]
- Noreen, S.; Raza, M.; Malik, S.N. Certain geometric properties of Mittag-Leffler functions. J. Inequal. Appl. 2019, 94, 1–15. [Google Scholar] [CrossRef]
- Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Al Soudi, M. A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
- Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 2, 32–39. [Google Scholar]
- Peng, Z.; Murugusundaramoorthy, G.; Janani, T. Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator. J. Complex Anal. 2014, 2014, 693908. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 10, 1188–1192. [Google Scholar] [CrossRef]
- Buyankara, M.; Çağlar, M.; Cotîrlă, L.I. New Subclasses of Bi-Univalent Functions with Respect to the Symmetric Points Defined by Bernoulli Polynomials. Axioms 2022, 11, 652. [Google Scholar] [CrossRef]
- Hu, Q.; Shaba, T.G.; Younis, J.; Khan, B.; Mashwani, W.K.; Çağlar, M. Applications of q-derivative operator to subclasses of bi-univalent functions involving Gegenbauer polynomials. Appl. Math. Sci. Eng. 2022, 1, 501–520. [Google Scholar] [CrossRef]
- Çağlar, M.; Cotîrlă, L.I.; Buyankara, M. Fekete–Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials. Symmetry 2022, 14, 1572. [Google Scholar] [CrossRef]
- Buyankara, M.; Çağlar, M. On Fekete-Szegö problem for a new subclass of bi-univalent functions defined by Bernoulli polynomials. Acta Univ. Apulensis 2022, 71, 137–145. [Google Scholar]
- Çağlar, M. Fekete-Szegö problem for a subclass of analytic functions associated with Chebyshev polynomials. Bol. Soc. Parana. Mat. 2022, 40, 01–06. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M. (p, q)-Chebyshev polynomials for the families of biunivalent function associating a new integral operator with (p, q)-Hurwitz zeta function. Turk. J. Math. 2022, 6, 25. [Google Scholar] [CrossRef]
- Çağlar, M. Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. CR Acad. Bulg. Sci. 2019, 72, 1608–1615. [Google Scholar]
- Venkateswarlu, B.; Thirupathi Reddy, P.; Altınkaya, Ş.; Boonsatit, N.; Hammachukiattikul, P.; Sujatha, V. On a Certain Subclass of Analytic Functions Defined by Touchard Polynomials. Symmetry 2022, 14, 838. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete–Szegö problems for certain subclasses of analytic functions defined by differential operator involving-Ruscheweyh Operator. J. Funct. Spaces 2020, 2020, 8459405. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Alsoboh, A.; Alsalhi, O. A new comprehensive subclass of analytic bi-univalent functions related to gegenbauer polynomials. Symmetry 2023, 15, 576. [Google Scholar] [CrossRef]
- Kamali, M.; Çağlar, M.; Deniz, E.; Turabaev, M. Fekete-Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials. Turk. J. Math. 2021, 3, 1195–1208. [Google Scholar] [CrossRef]
- Alatawi, A.A.; Darus, M. On a certain subclass of analytic functions involving the modified q-Opoola derivative operator. Int. J. Nonlinear Anal. Appl. 2023, in press.
- Kazmoğlu, S.; Deniz, E. Fekete-Szegö problem for generalized bi-subordinate functions of complex order. Hacet. J. Math. Stat. 2020, 49, 1695–1705. [Google Scholar] [CrossRef]
- Deniz, E.; Jahangiri, J.M.; Kına, S.K.; Hamidi, S.G. Faber polynomial coe¢ cients for generalized bi-subordinate functions of complex order. J. Math. Ineq. 2018, 12, 645–653. [Google Scholar] [CrossRef]
- Deniz, E.; Kamali, M.; Korkmaz, S. A certain subclass of bi-univalent functions associated with Bell numbers and q-Srivastava Attiya operator. AIMS Math. 2020, 5, 7259–7271. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete-Szego Problem Associated with q-derivative Operator. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1212, p. 012003. [Google Scholar]
- Alsoboh, A.; Amourah, A.; Darus, M.; Sharefeen, R.I.A. Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions. Mathematics 2023, 11, 868. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [Google Scholar] [CrossRef]
- Wanas, A.K.; Sakar, F.M.; Oros, G.I.; Cotîrlă, L.-I. Toeplitz determinants for a certain family of analytic functions endowed with Borel distribution. Symmetry 2023, 15, 262. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math.-Soc.-Simon Stevin 2014, 1, 169–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatawi, A.; Darus, M.; Alamri, B. Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function. Symmetry 2023, 15, 785. https://doi.org/10.3390/sym15040785
Alatawi A, Darus M, Alamri B. Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function. Symmetry. 2023; 15(4):785. https://doi.org/10.3390/sym15040785
Chicago/Turabian StyleAlatawi, Abdullah, Maslina Darus, and Badriah Alamri. 2023. "Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function" Symmetry 15, no. 4: 785. https://doi.org/10.3390/sym15040785
APA StyleAlatawi, A., Darus, M., & Alamri, B. (2023). Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function. Symmetry, 15(4), 785. https://doi.org/10.3390/sym15040785