# Channel Fading Characteristics of Hyperloop Scenarios Based on Ray-Tracing Model

^{*}

## Abstract

**:**

## 1. Introduction

- (i)
- A 3D ray-tracing model for Hyperloop in vacuum tube scenarios is constructed in this paper. The reflection paths and line of sight (LoS) path are considered.
- (ii)
- Based on the proposed model, the channel impulse response (CIR) is obtained. Then the large-scale fading and small-scale fading characteristics, including path loss, shadow fading, correlation coefficient, delay spread, and angular spread, are investigated and analyzed.

## 2. System Model

## 3. Simulation Setting

## 4. Results & Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Nathan, G.; Shane, M.; Richard, O.; Beatrice, S.; Jerry, D.M. Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Adv. Appl. Energy
**2021**, 1, 100008. [Google Scholar] [CrossRef] - Tavsanoglu, A.; Briso, C.; Carmena-Cabanillas, D.; Arancibia, R.B. Concepts of Hyperloop Wireless Communication at 1200 km/h: 5G, Wi-Fi, Propagation, Doppler and Handover. Energies
**2021**, 14, 983. [Google Scholar] [CrossRef] - Seilsepour, H.; Zarastvand, M.; Talebitooti, R. Acoustic insulation characteristics of sandwich composite shell systems with double curvature: The effect of nature of viscoelastic core. J. Vib. Control
**2023**, 29, 1076–1090. [Google Scholar] [CrossRef] - Jin, M.; Huang, L. Development status and trend of ultra high-speed vacuum pipeline transportation technology. Sci. Technol. China
**2017**, 32, 1–3. [Google Scholar] - Aksenov, N. Maglev: As a new stage of high-speed transport development. Transp. Syst. Technol.
**2017**, 3, 24–34. [Google Scholar] [CrossRef] - Elon, M. Hyperloop Alpha; SpaceX: Hawthorne, CA, USA, 2013. [Google Scholar]
- Hedhly, W.; Amin, O.; Shihada, B.; Alouini, M.S. Hyperloop Communications: Challenges, Advances, and Approaches. IEEE Open J. Commun. Soc.
**2021**, 2, 2413–2435. [Google Scholar] [CrossRef] - Southwest Jiaotong University. Dynamic Simulation Platform for Polymorphic Coupling Rail Transit Launched. 2020. Available online: https://en.swjtu.edu.cn/info/1063/1627.html (accessed on 5 January 2023).
- Government of Shanxi Province. High-Speed Flying Train Flying from Shanxi Province. 2021. Available online: http://www.dt.gov.cn/dtzww/sxyw/202105/42ac150baedd4c2eb44aa48783983b26.shtml (accessed on 5 January 2023).
- Shanxi Science and Technology News. The First Test of High-Speed Flying Train System of Major Projects in Shanxi Province Was Successful. 2022. Available online: https://new.qq.com/rain/a/20221020A05RIS00 (accessed on 5 January 2023).
- Orbital World. Musk’s Company Announced the Launch of “Full-Size Hyperloop” Test. 2022. Available online: http://rail.ckcest.cn/Tky/Front/Data/Detail?id=3410691 (accessed on 6 January 2023).
- Yu, J.; Ai, B.; Fei, D.; Wang, N.; Chen, Z. Performance analysis of Doppler effect suppression by subcarrier spacing in ultra-high-speed environment. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 901–902. [Google Scholar] [CrossRef]
- Ali, W.; Wang, J.; Zhu, H.; Wang, J. An Expedited Predictive Distributed Antenna System Based Handover Scheme for High-Speed Railway. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, H.; Ai, B.; Xue, C.; Liu, L. Deep-Learning-Based Spatial–Temporal Channel Prediction for Smart High-Speed Railway Communication Networks. IEEE Trans. Wirel. Commun.
**2022**, 21, 5333–5345. [Google Scholar] [CrossRef] - Han, B.; Liu, L.; Wang, K.; Zhang, J.; Zhou, T.; Su, Z. Performance Analysis of Train-Ground Communication System for Vacuum Tube High-Speed Flying Train. In Proceedings of the 2021 7th International Conference on Computer and Communications (ICCC), Chengdu, China, 10–13 December 2021; pp. 425–429. [Google Scholar] [CrossRef]
- Han, B.; Zhang, J.; Liu, L.; Tao, C. Position-based wireless channel characterization for the high-speed vactrains in vacuum tube scenarios using propagation graph modeling theory. Radio Sci.
**2020**, 55, e2020RS007067. [Google Scholar] [CrossRef] - Yan, X.; Asad, S.; Muhammad, A.; Wali, U.K.; Zain, U.A.A.; Md, S.A. Non-stationary 3-D GBSM channel model for V2V communications. IET Commun.
**2022**, 2022. early access. [Google Scholar] [CrossRef] - Rabie, K.M.; Saleem, A.; Xu, Y.; Khan, R.A.; Rasheed, I.; Jaffri, Z.U.A.; Layek, M.A. Statistical Characteristics of 3D MIMO Channel Model for Vehicle-to-Vehicle Communications. Wirel. Commun. Mob. Comput.
**2022**, 2022, 9090494. [Google Scholar] [CrossRef] - Xu, Y.; Yu, K.; Li, L.; Lei, X.; Hao, L.; Wang, C.X. A 3D Non-stationary MmWave Channel Model for Vacuum Tube Ultra-High-Speed Train Channels. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Wang, K.; Han, B.; Piao, Z.; Wang, D. Analysis of the Effective Scatters for Hyperloop Wireless Communications Using the Geometry-Based Model. In Machine Learning for Cyber Security, Proceedings of the Third International Conference, ML4CS 2020, Guangzhou, China, 8–10 October 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 87–97. [Google Scholar]
- Wang, L.; Ai, B.; Yang, J.; Qiu, H.; Wang, W.; Guan, K. Vehicular channel in urban environments at 23 GHz for flexible access common spectrum application. Int. J. Antennas Propag.
**2019**, 2019, 5425703. [Google Scholar] [CrossRef][Green Version] - Xiong, L.; Yao, Z.; Miao, H.; Ai, B. Vehicle-to-Vehicle Channel Characterization Based on Ray-Tracing for Urban Road Scenarios. Wirel. Commun. Mob. Comput.
**2021**, 2021, 8854247. [Google Scholar] [CrossRef] - Pascual-García, J.; Rubio, L.; Rodrigo Peñarrocha, V.M.; Juan-Llácer, L.; Molina-García-Pardo, J.M.; Sanchis-Borrás, C.; Reig, J. Wireless Channel Analysis between 25 and 40 GHz in an Intra-Wagon Environment for 5G Using a Ray-Tracing Tool. IEEE Trans. Intell. Transp. Syst.
**2022**, 23, 24621–24635. [Google Scholar] [CrossRef] - Friis, H.T. A Note on a Simple Transmission Formula. Proc. IRE
**1946**, 34, 254–256. [Google Scholar] [CrossRef] - Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Yu, G.; Tian, L.; Zhang, J.; Wang, C. The Method to Implement 5G Channel Model with Spatial Consistency. In Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC), Beijing, China, 16–18 August 2018; pp. 736–740. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, H.; Ai, B.; Liu, L. Weighted Score Fusion Based LSTM Model for High-Speed Railway Propagation Scenario Identification. IEEE Trans. Intell. Transp. Syst.
**2022**, 23, 23668–23679. [Google Scholar] [CrossRef]

Parameters | Definitions |
---|---|

${A}_{m}^{T}$,${A}_{n}^{R}$ | positions of m-th Tx and n-th Rx |

${\alpha}_{LoS}^{T}\left(t\right)$, ${\beta}_{LoS}^{T}\left(t\right)$ | azimuth and elevation departure angles of the LoS path |

${\alpha}_{LoS}^{R}\left(t\right)$, ${\beta}_{LoS}^{R}\left(t\right)$ | azimuth and elevation arrival angles of the LoS path |

${\alpha}_{k}^{T}\left(t\right)$, ${\beta}_{k}^{T}\left(t\right)$ | azimuth and elevation departure angles of the k-th NLoS path |

${\alpha}_{k}^{R}\left(t\right)$, ${\beta}_{k}^{R}\left(t\right)$ | azimuth and elevation arrival angles of the k-th NLoS path |

${D}_{m,n}^{LoS}\left(t\right)$ | path distance of the LoS component |

${D}_{m,k}^{NLoS}\left(t\right)$ | path distance of the NLoS component |

from Tx to reflection point ${r}_{k}$ | |

${D}_{k,n}^{NLoS}\left(t\right)$ | path distance of the NLoS component |

from reflection point to ${r}_{k}$ |

Parameters | Value |
---|---|

Carrier frequency | 4.85 GHz |

System bandwith | 100 MHz |

R | 1.65 m |

Length | 500 m |

Train speed | 1000 km/h |

Tx position | (0, 0, 3.2) m |

Initial Rx position | (−250, 0, 2.7) m |

Tx number | 1 |

Rx number | 1 |

Antenna type | Omni-directive |

Ray spacing | 0.05 degree |

Maximal number of reflection | 16 |

Tx power | 30 dBm |

Position space | 0.5 m |

Position | n | ${\mathit{A}}_{0}$ | ${\mathit{X}}_{\mathbf{SF}}$ |
---|---|---|---|

0–250 m | 1.42 | 47.44 | 5.36 |

250–500 m | 1.46 | 47.65 | 6.44 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, K.; Liu, L.; Zhang, J.; Liu, M. Channel Fading Characteristics of Hyperloop Scenarios Based on Ray-Tracing Model. *Symmetry* **2023**, *15*, 567.
https://doi.org/10.3390/sym15030567

**AMA Style**

Wang K, Liu L, Zhang J, Liu M. Channel Fading Characteristics of Hyperloop Scenarios Based on Ray-Tracing Model. *Symmetry*. 2023; 15(3):567.
https://doi.org/10.3390/sym15030567

**Chicago/Turabian Style**

Wang, Kai, Liu Liu, Jiachi Zhang, and Meilu Liu. 2023. "Channel Fading Characteristics of Hyperloop Scenarios Based on Ray-Tracing Model" *Symmetry* 15, no. 3: 567.
https://doi.org/10.3390/sym15030567