Enantioseparation of β-Blockers Using Silica-Immobilised Eremomycin Derivatives as Chiral Stationary Phases in HPLC
Abstract
:1. Introduction
Analyte | logP [17] | pKa [18] | Structure |
---|---|---|---|
Propranolol | 3.48 | 9.45 | |
Pindolol | 1.75 | 8.80; 9.54 | |
Alprenolol | 3.10 | 9.60 | |
Atenolol | 0.16 | 9.60 | |
Metoprolol | 1.88 | 9.70 | |
Oxprenalol | 2.10 | 9.5 | |
Sotalol | 0.24 | 8.28; 9.72 | |
Pronethalol | 3.00 | 9.42 | |
Clenbuterol | 2.00 a | 9.37 | |
Salbutamol | 0.64 a | 9.20; 10.7 | |
Labetalol | 3.09 | 7.44; 9.38 |
2. Materials and Methods
2.1. Preparation of Chiral Selectors
2.1.1. Synthesis of Des-Eremosaminyl Eremomycin
2.1.2. Synthesis of Eremosaminyl Aglycon of Eremomycin and Eremomycin Aglycon
2.2. Synthesis of Chiral Phases
2.3. Chromatographic Experiments
2.3.1. Columns and Equipment
2.3.2. Materials and Consumables
3. Results and Discussion
3.1. Sselection of the Eluent
3.2. Retention of β-Blockers on CSPs
3.3. Enantioselectivity of CSPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vashistha, V.K.; Kumar, A. Stereochemical facets of clinical β-blockers: An overview. Chirality 2020, 32, 722–735. [Google Scholar] [CrossRef]
- Shapovalova, E.N.; Fedorova, I.A.; Anan’eva, I.A.; Shpigun, O.A. Macrocyclic Antibiotics as Chiral Selectors in High-Performance Liquid Chromatography and Capillary Electrophoresis. J. Anal. Chem. 2018, 73, 1064–1075. [Google Scholar] [CrossRef]
- Desiderio, C.; Aturki, Z.; Fanali, S. Use of vancomycin silica stationary phase in packed capillary electrochromatography I. Enantiomer separation of basic compounds. Electrophoresis 2001, 22, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Pokrovskiy, O.I.; Kayda, A.S.; Usovich, O.I.; Parenago, O.O.; Lunin, V.V. Effect of additives on eremomycin sorbent selectivity in separation of salbutamol enantiomers using supercritical fluid chromatography. Russ. J. Phys. Chem. A 2017, 91, 2288–2290. [Google Scholar] [CrossRef]
- Ribeiro, C.; Gonçalves, R.; Tiritan, M.E. Separation of Enantiomers Using Gas Chromatography: Application in Forensic Toxicology, Food and Environmental Analysis. Crit. Rev. Anal. Chem. 2021, 51, 787–811. [Google Scholar] [CrossRef]
- Malik, P.; Bhushan, R. Thin Layer Chromatographic Resolution of Some β-adrenolytics and a β2-Agonist Using Bovine Serum Albumin as Chiral Additive in Stationary Phase. J. Chromatogr. Sci. 2017, 56, 92–98. [Google Scholar] [CrossRef]
- Subramanian, G. (Ed.) Chiral Separation Techniques: A Practical Approach. Third Completely Revised and Updated Edition; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2006; p. 618. [Google Scholar]
- Yang, Y.; Wang, Y.; Bao, Z.; Yang, Q.; Zhang, Z.; Ren, Q. Progress in the enantioseparation of β-blockers by chromatographic methods. Molecules 2021, 26, 468. [Google Scholar] [CrossRef]
- Moldovan, R.C.; Dascăl, G.S.; Mirel, V.; Bodoki, E.; Oprean, R. Chiral separation of 16 beta-blockers on immobilized polysaccharide chiral stationary phases. Farmacia 2015, 63, 909–912. [Google Scholar]
- Imre, S.; Ormenişan, A.; Tero-Vescan, A.; Muntean, D.L.; Vari, C.E. HPLC Enantioseparation of β-Blockers on Ovomucoid Stationary Phase. J. Chromatogr. Sci. 2016, 54, 1578–1583. [Google Scholar] [CrossRef]
- Ahmed, M.; Ghanem, A. Chiral β-cyclodextrin functionalized polymer monolith for the direct enantioselective reversed phase nano liquid chromatographic separation of racemic pharmaceuticals. J. Chromatogr. A 2014, 1345, 115–127. [Google Scholar] [CrossRef]
- Hyun, M.H. Liquid chromatographic enantioseparations on crown ether-based chiral stationary phases. J. Chromatogr. A 2016, 1467, 19–32. [Google Scholar] [CrossRef]
- Pirkle, W.H.; Burke Iii, J.A. Chiral stationary phase designed for β-blockers. J. Chromatogr. A 1991, 557, 173–185. [Google Scholar] [CrossRef]
- Armstrong, D.W.; Tang, Y.; Chen, S.; Zhou, Y.; Bagwlll, C.; Chen, J.R. Macrocyclic Antibiotics as a New Class of Chiral Selectors for Liquid Chromatography. Anal. Chem. 1994, 66, 1473–1484. [Google Scholar] [CrossRef]
- Berthod, A.; Qiu, H.X.; Staroverov, S.M.; Kuznestov, M.A.; Armstrong, D.W. Chiral recognition with macrocyclic glycopeptides: Mechanisms and applications. In Chiral Recognition in Separation Methods: Mechanisms and Applications; Berthod, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 203–222. [Google Scholar] [CrossRef]
- Berkecz, R.; Tanács, D.; Péter, A.; Ilisz, I. Enantioselective liquid chromatographic separations using macrocyclic glycopeptide-based chiral selectors. Molecules 2021, 26, 3380. [Google Scholar] [CrossRef]
- KOWWIN ver. 1.68. EPI Suite™-Estimation Program Interface. US Environmental Protection Agency. 2010. Available online: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface (accessed on 10 January 2023).
- Lombardo, F.; Obach, R.S.; Shalaeva, M.Y.; Gao, F. Prediction of Human Volume of Distribution Values for Neutral and Basic Drugs. 2. Extended Data Set and Leave-Class-Out Statistics. J. Med. Chem. 2004, 47, 1242–1250. [Google Scholar] [CrossRef]
- Bosáková, Z.; Cuřínová, E.; Tesařová, E. Comparison of vancomycin-based stationary phases with different chiral selector coverage for enantioselective separation of selected drugs in high-performance liquid chromatography. J. Chromatogr. A 2005, 1088, 94–103. [Google Scholar] [CrossRef]
- Armstrong, D.W.; Rundlett, K.; Reid, G.L. Use of a Macrocyclic Antibiotic, Rifamycin B, and Indirect Detection for the Resolution of Racemic Amino Alcohols by CE. Anal. Chem. 1994, 66, 1690–1695. [Google Scholar] [CrossRef]
- Shen, B.C.; Zhang, D.T.; Xu, B.J.; Xu, X.Z. Comparative enantioseparation of seven amino alcohols on teicoplanin-based chiral stationary phases. Anal. Lett. 2007, 40, 2821–2839. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, Y.; Huang, K.; Barnett-Rundlett, K.L.; Armstrong, D.W. Evaluation of dalbavancin as chiral selector for HPLC and comparison with teicoplanin-based chiral stationary phases. Chirality 2010, 22, 495–513. [Google Scholar] [CrossRef] [Green Version]
- Shapovalova, E.N.; Fedorova, I.A.; Priporova, A.A.; Ananieva, I.A.; Shpigun, O.A. Determination of the enantiomeric purity of albuterol on sorbents modified by macrocyclic antibiotics. Mosc. Univ. Chem. Bull. 2017, 72, 56–62. [Google Scholar] [CrossRef]
- Ekborg-Ott, K.H.; Liu, Y.; Armstrong, D.W. Highly enantioselective HPLC separations using the covalently bonded macrocyclic antibiotic, ristocetin A, chiral stationary phase. Chirality 1998, 10, 434–483. [Google Scholar] [CrossRef]
- Nesterenko, P.N.; Krotov, V.V.; Staroverov, S.M. Effect of mobile phase composition on the enantioselectivity of chromatographic separation on a quinine-bonded silica stationary phase. J. Chromatogr. A 1994, 667, 19–28. [Google Scholar] [CrossRef]
- Kuznetsov, M.A.; Nesterenko, P.N.; Vasiyarov, G.G.; Staroverov, S.M. High-performance liquid chromatography of α-amino acid enantiomers on eremomycin-modified silica. J. Anal. Chem. 2008, 63, 57–64. [Google Scholar] [CrossRef]
- Nair, U.B.; Chang, S.S.C.; Armstrong, D.W.; Rawjee, Y.Y.; Eggleston, D.S.; McArdle, J.V. Elucidation of vancomycin's enantioselective binding site using its copper complex. Chirality 1996, 8, 590–595. [Google Scholar] [CrossRef]
- Hellinghausen, G.; Lopez, D.A.; Lee, J.T.; Wang, Y.; Weatherly, C.A.; Portillo, A.E.; Berthod, A.; Armstrong, D.W. Evaluation of the Edman degradation product of vancomycin bonded to core-shell particles as a new HPLC chiral stationary phase. Chirality 2018, 30, 1067–1078. [Google Scholar] [CrossRef]
- Ghassempour, A.; Alizadeh, R.; Najafi, N.M.; Karami, A.; Römpp, A.; Spengler, B.; Aboul-Enein, H.Y. Crystalline degradation products of vancomycin as chiral stationary phase in microcolumn liquid chromatography. J. Sep. Sci. 2008, 31, 2339–2345. [Google Scholar] [CrossRef]
- Sarvin, N.; Puzankov, R.; Vasiyarov, G.; Nesterenko, P.N.; Staroverov, S.M. Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography. Molecules 2023, 28, 85. [Google Scholar] [CrossRef]
- Sarvin, N.; Puzankov, R.; Nesterenko, P.N.; Staroverov, S.M. Enantioselectivity of liquid chromatographic separation of profens on chiral sorbents with immobilized eremomycin derivatives and oritavancin. Sorbtsionnye Khromatograficheskie Protsessy 2022, 22, 638–649. [Google Scholar] [CrossRef]
- Berthod, A.; Xiao, T.L.; Liu, Y.; Jenks, W.S.; Armstrong, D.W. Separation of chiral sulfoxides by liquid chromatography using macrocyclic glycopeptide chiral stationary phases. J. Chromatogr. A 2002, 955, 53–69. [Google Scholar] [CrossRef]
- Kuznetsov, M.A.; Nesterenko, P.N.; Vasiyarov, G.G.; Staroverov, S.M. Sorbents with immobilized glycopeptide antibiotics for separating optical isomers by high-performance liquid chromatography. Appl. Biochem. Microbiol. 2006, 42, 536–544. [Google Scholar] [CrossRef]
- Lomakina, N.N.; Berdnikova, T.F.; Tokareva, N.L.; Abramova, E.A.; Dokshina Yu, N. Structure of eremomycin, a novel antibiotic of the group of polycyclic glycopeptides. Antibiot. Khimioterapiya 1989, 34, 254–258. [Google Scholar]
- Staroverov, S.M.; Kuznetsov, M.A.; Nesterenko, P.N.; Vasiarov, G.G.; Katrukha, G.S.; Fedorova, G.B. New chiral stationary phase with macrocyclic glycopeptide antibiotic eremomycin chemically bonded to silica. J. Chromatogr. A 2006, 1108, 263–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedorova, I.A.; Shapovalova, E.N.; Staroverov, S.M.; Shpigun, O.A. Enantioseparation of derivatives of amino acids on silica modified by macrocyclic antibiotic eremomycin. Sorbtsionnye Khromatograficheskie Protsessy 2015, 15, 769–775. [Google Scholar]
- Reshetova, E.N.; Asnin, L.D. The chromatographic behavior and thermodynamic characteristics of adsorption of profen enantiomers on silica gel with grafted eremomycin antibiotic. Russ. J. Phys. Chem. A 2009, 83, 547–551. [Google Scholar] [CrossRef]
- Gogolishvili, O.S.; Reshetova, E.N. Chromatographic enantioseparation and adsorption thermodynamics of hydroxy acids and their derivatives on antibiotic-based chiral stationary phases as affected by eluent pH. Chromatographia 2021, 84, 53–73. [Google Scholar] [CrossRef]
- Stepanova, M.V.; Asnin, L.D.; Boteva, A.A.; Kudinov, A.V. Chromatographic behavior and adsorption thermodynamics of chiral pyrroloquinolones on silica grafted with antibiotic eremomycin. Vestn. Permsk. Naz. Issledovatel'skogo Polytekhnicheskogo Universiteta. Khimicheskaya Tekhnologiya Biotekhnologiya 2018, 4, 20–34. [Google Scholar] [CrossRef]
- Shapovalova, E.N.; Fedorova, I.A.; Proporova, A.A.; Ananieva, I.A.; Shpigun, O.A. Determination of the enantiomeric purity of pemetrexed on the macrocyclic glycopeptides bonded phases. Anal. Kontrol 2016, 20, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Hashem, H.; Tründelberg, C.; Attef, O.; Jira, T. Effect of chromatographic conditions on liquid chromatographic chiral separation of terbutaline and salbutamol on Chirobiotic V column. J. Chromatogr. A 2011, 1218, 6727–6731. [Google Scholar] [CrossRef]
- Prosuntsova, D.S.; Ananieva, I.A.; Nesterenko, P.N.; Shpigun, O.A. Microspherical polystyrene-divinylbenzene particles hybridized with eremomycin stabilized gold nanoparticles as a stationary phase for chiral liquid chromatography. Ind. Laboratory. Diagn. Mater. 2022, 88, 14–22. [Google Scholar] [CrossRef]
- Prosuntsova, D.S.; Plodukhin, A.Y.; Ananieva, I.A.; Beloglazkina, E.K.; Nesterenko, P.N. New composite stationary phase for chiral high-performance liquid chromatography. J. Porous Mater. 2020, 28, 407–414. [Google Scholar] [CrossRef]
- Carvalho, T.M.; Cavalli Rde, C.; Marques, M.P.; Da Cunha, S.P.; Baraldi Cde, O.; Lanchote, V.L. Stereoselective analysis of labetalol in human plasma by LC-MS/MS: Application to pharmacokinetics. Chirality 2009, 21, 738–744. [Google Scholar] [CrossRef] [PubMed]
Chiral Stationary Phases | E-CSP | EEA-CSP | EAg-CSP | Chirobiotic V [19] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta-Blocker | k’1 | α | RS | k’1 | α | RS | k’1 | α | RS | k’1 | α | RS |
Propranolol | 0.29 | 1.17 | 0.52 | 1.27 | 1.17 | 2.27 | 0.87 | 1.15 | 0.91 | |||
Pindolol | 0.28 | 1.21 | 0.56 | 1.18 | 1.13 | 1.61 | 0.86 | 1.22 | 0.87 | |||
Alprenolol | 0.15 | 1.27 | 0.55 | 0.95 | 1.16 | 1.73 | 0.67 | 1.18 | 0.94 | |||
Metoprolol | 0.17 | 1.29 | 0.57 | 1.06 | 1.14 | 1.82 | - | - | - | |||
Atenolol | 0.80 | 1.00 | 0.00 | 1.86 | 1.12 | 1.77 | 1.21 | 1.13 | 0.93 | |||
Oxprenalol | 0.25 | 1.00 | 0.00 | 0.93 | 1.11 | 1.34 | 0.70 | 1.11 | 0.78 | |||
Sotalol | 0.31 | 1.26 | 0.88 | 1.43 | 1.14 | 1.92 | - | - | - | |||
Pronethalol | 0.25 | 1.00 | 0.00 | 1.11 | 1.14 | 1.50 | - | - | - | |||
Clenbuterol | 0.09 | 1.78 | 1.09 | 0.84 | 1.14 | 1.59 | - | - | - | |||
Salbutamol | 1.23 a | 1.20a | 1.10a | 0.08 | 2.00 | 1.14 | 0.80 | 1.14 | 1.29 | - | - | - |
Chiral Stationary Phases | E-CSP | Chloro-E-CSP | Amide-E-CSP | O-CSP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta-Blocker | k’1 | α | RS | k’1 | α | RS | k’1 | α | RS | k’1 | α | RS |
Propranolol | 0.71 | 1.15 | 0.61 | 0.40 | 1.00 | 0.00 | 0.27 | 1.00 | 0.00 | 0.40 | 1.00 | 0.00 |
Pindolol | 0.76 | 1.16 | 0.71 | 1.43 | 1.00 | 0.00 | 0.32 | 1.00 | 0.00 | 0.38 | 1.11 | 0.27 |
Alprenolol | 0.46 | 1.17 | 0.64 | 0.14 | 1.00 | 0.00 | 0.32 | 1.00 | 0.00 | 0.23 | 1.00 | 0.00 |
Metoprolol | 0.49 | 1.23 | 0.83 | 0.15 | 1.00 | 0.00 | 0.29 | 1.00 | 0.00 | 0.24 | 1.20 | 0.37 |
Atenolol | 1.66 | 1.12 | 0.70 | 1.45 | 1.00 | 0.00 | 0.26 | 1.00 | 0.00 | 0.89 | 1.00 | 0.00 |
Oxprenalol | 0.42 | 1.14 | 0.52 | 0.03 | 1.00 | 0.00 | 0.28 | 1.00 | 0.00 | 0.18 | 1.00 | 0.00 |
Sotalol | 0.94 | 1.16 | 0.68 | 0.54 | 1.00 | 0.00 | 0.26 | 1.00 | 0.00 | 0.19 | 1.00 | 0.00 |
Pronethalol | 0.70 | 1.12 | 0.57 | 0.36 | 1.00 | 0.00 | 0.30 | 1.00 | 0.00 | 0.40 | 1.00 | 0.00 |
Clenbuterol | 0.76 | 1.24 | 0.72 | 0.27 | 1.30 | 0.37 | 0.34 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 |
Salbutamol | 1.24 a | 1.96 a | 1.10 a | - | - | - | - | - | - | - | - | - |
Labetalol-1 b | 2.87 | 1.00 | 0.00 | 2.89 | 1.00 | 0.00 | - | - | - | - | - | - |
Labetalol-2 | 3.78 | 1.22 | 1.54 | 3.94 | 1.20 | 0.84 | - | - | - | - | - | - |
Chiral Stationary Phases | DEE-CSP | EAg-CSP | Adamantylamide-E-CSP | |||||||||
Beta-Blocker | k’1 | α | RS | k’1 | α | RS | k’1 | α | RS | |||
Propranolol | 2.23 | 1.12 | 1.09 | 2.54 | 1.13 | 0.72 | 1.09 | 1.00 | 0.00 | |||
Pindolol | 2.29 | 1.14 | 1.13 | 2.50 | 1.09 | 0.52 | 0.61 | 1.00 | 0.00 | |||
Alprenolol | 1.70 | 1.13 | 1.07 | 1.97 | 1.13 | 0.70 | 0.17 | 1.00 | 0.00 | |||
Metoprolol | 1.75 | 1.17 | 1.32 | 2.06 | 1.13 | 0.80 | 0.30 | 1.00 | 0.00 | |||
Atenolol | 4.22 | 1.14 | 1.15 | 3.92 | 1.10 | 0.60 | 0.63 | 1.00 | 0.00 | |||
Oxprenalol | 1.58 | 1.09 | 0.82 | 1.68 | 1.12 | 0.85 | 0.72 | 1.00 | 0.00 | |||
Sotalol | 0.30 | 1.00 | 0.00 | |||||||||
Pronethalol | 2.15 | 1.10 | 0.93 | 1.07 | 1.07 | 0.54 | 1.00 | 1.00 | 0.00 | |||
Clenbuterol | 0.22 | 1.00 | 0.00 | |||||||||
Labetalol-1 b | 5.57 | 1.00 | 0.00 | 7.74 | 1.00 | 0.00 | ||||||
Labetalol-2 | 7.62 | 1.27 | 3.24 | 8.21 | 1.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, M.A.; Staroverov, S.M.; Sarvin, N.; Puzankov, R.; Nesterenko, P.N. Enantioseparation of β-Blockers Using Silica-Immobilised Eremomycin Derivatives as Chiral Stationary Phases in HPLC. Symmetry 2023, 15, 373. https://doi.org/10.3390/sym15020373
Kuznetsov MA, Staroverov SM, Sarvin N, Puzankov R, Nesterenko PN. Enantioseparation of β-Blockers Using Silica-Immobilised Eremomycin Derivatives as Chiral Stationary Phases in HPLC. Symmetry. 2023; 15(2):373. https://doi.org/10.3390/sym15020373
Chicago/Turabian StyleKuznetsov, Mikhail A., Sergey M. Staroverov, Nikita Sarvin, Ruslan Puzankov, and Pavel N. Nesterenko. 2023. "Enantioseparation of β-Blockers Using Silica-Immobilised Eremomycin Derivatives as Chiral Stationary Phases in HPLC" Symmetry 15, no. 2: 373. https://doi.org/10.3390/sym15020373
APA StyleKuznetsov, M. A., Staroverov, S. M., Sarvin, N., Puzankov, R., & Nesterenko, P. N. (2023). Enantioseparation of β-Blockers Using Silica-Immobilised Eremomycin Derivatives as Chiral Stationary Phases in HPLC. Symmetry, 15(2), 373. https://doi.org/10.3390/sym15020373